Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,724 Bytes
1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 b759ccc 1832e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import math
import numpy as np
import torch
from scipy.special import gammaincc
from scipy.stats import gamma
from config import COV_TOL
from utils import get_gpu_count, mahalanobis_torch, safe_cov_torch
def pm_tail_gamma(d_out_sq, sq_dists):
"""
Computes the PM measure based on the Gamma fit.
:param d_out_sq: squared mahalanobis distance from the output to its cluster on the manifold.
:param sq_dists: squared mahalanobis distance of all distortions in the cluster to their cluster on the manifold.
:return: PM score.
"""
mu = sq_dists.mean().item()
var = sq_dists.var(unbiased=True).item()
if var == 0.0:
return 1.0
k = (mu**2) / var
theta = var / mu
return float(1.0 - gamma.cdf(d_out_sq, a=k, scale=theta))
def pm_tail_rank(d_out_sq, sq_dists):
"""
A depracted method to compute the PM measure based on the ranking method of distances.
"""
rank = int((sq_dists < d_out_sq).sum().item())
n = sq_dists.numel()
return 1.0 - (rank + 0.5) / (n + 1.0)
def diffusion_map_torch(
X_np,
labels_by_mix,
*,
cutoff=0.99,
tol=1e-3,
diffusion_time=1,
alpha=0.0,
eig_solver="lobpcg",
k=None,
device=None,
return_eigs=False,
return_complement=False,
return_cval=False,
):
"""
Compute diffusion maps from a high dimensional set of points.
:param X_np: high dimensional input.
:param labels_by_mix: used to keep track of each source's coordinates on the manifold.
:param cutoff: the desired ratio between sum of kept and sum of all eigenvalues.
:param tol: deprecated since we do not use the "lobpcg" solver.
:param diffusion_time: number of steps taken on the probability transition matrix.
:param alpha: normalization factor in [0, 1].
:param eig_solver: "lobpcg" or "full".
:param k: pre-defined truncation dimension.
:param device: "cpu" or "cuda".
:param return_eigs: return eigenvalues and eigenvectors.
:param return_complement: return complementary coordinates, not just kept coordinates.
:param return_cval: calculate and return the psi_2 norm of the coordinates.
:return:
"""
device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
X = torch.as_tensor(X_np, dtype=torch.float32, device=device)
N = X.shape[0]
if device != "cpu" and torch.cuda.is_available():
stream = torch.cuda.Stream(device=device)
ctx_dev = torch.cuda.device(device)
ctx_stream = torch.cuda.stream(stream)
else:
from contextlib import nullcontext
stream = None
ctx_dev = nullcontext()
ctx_stream = nullcontext()
with ctx_dev:
with ctx_stream:
if N > 1000:
chunk = min(500, N)
D2 = torch.zeros(N, N, device=device)
for i in range(0, N, chunk):
ei = min(i + chunk, N)
for j in range(0, N, chunk):
ej = min(j + chunk, N)
D2[i:ei, j:ej] = torch.cdist(X[i:ei], X[j:ej]).pow_(2)
else:
D2 = torch.cdist(X, X).pow_(2)
i, j = torch.triu_indices(
N, N, offset=1, device=None if device == "cpu" else device
)
eps = torch.median(D2[i, j])
K = torch.exp(-D2 / (2 * eps))
d = K.sum(dim=1)
if alpha != 0.0:
d_alpha_inv = d.pow(-alpha)
K *= d_alpha_inv[:, None] * d_alpha_inv[None, :]
d = K.sum(dim=1)
D_half_inv = torch.diag(torch.rsqrt(d))
K_sym = D_half_inv @ K @ D_half_inv
if eig_solver == "lobpcg":
m = k if k is not None else min(N - 1, 50)
init = torch.randn(N, m, device=device)
vals, vecs = torch.lobpcg(
K_sym, k=m, X=init, niter=200, tol=tol, largest=True
)
elif eig_solver == "full":
vals, vecs = torch.linalg.eigh(K_sym)
vals, vecs = vals.flip(0), vecs.flip(1)
if k is not None:
vecs = vecs[:, : k + 1]
vals = vals[: k + 1]
else:
raise ValueError(f"Unknown eig_solver '{eig_solver}'")
psi = vecs[:, 1:]
lam = vals[1:]
cum = torch.cumsum(lam, dim=0)
L = int((cum / cum[-1] < cutoff).sum().item()) + 1
lam_pow = lam.pow(diffusion_time)
psi_all = psi * lam_pow
Psi = psi_all[:, :L]
Psi_rest = psi_all[:, L:]
if return_cval:
indices_with_out = [
ii for ii, name in enumerate(labels_by_mix) if "out" in name
]
valid_idx = torch.tensor(
[ii for ii in range(N) if ii not in indices_with_out], device=device
)
pi_min = d[valid_idx].min() / d[valid_idx].sum()
c_val = lam_pow[0] * pi_min.rsqrt() / math.log(2.0)
if stream is not None:
stream.synchronize()
if return_complement and return_eigs and return_cval:
return (
Psi.cpu().numpy(),
Psi_rest.cpu().numpy(),
lam.cpu().numpy(),
float(c_val),
)
if return_complement and return_eigs:
return Psi.cpu().numpy(), Psi_rest.cpu().numpy(), lam.cpu().numpy()
if return_complement:
return Psi.cpu().numpy(), Psi_rest.cpu().numpy()
if return_eigs:
return Psi.cpu().numpy(), lam.cpu().numpy()
return Psi.cpu().numpy()
def compute_ps(coords, labels, max_gpus=None):
"""
Computes the PS measure.
:param coords: coordinates on the manifold.
:param labels: assign source index per coordinate.
:param max_gpus: maximal number of GPUs to use.
:return: the PS measure.
"""
ngpu = get_gpu_count(max_gpus)
if ngpu == 0:
coords_t = torch.tensor(coords)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu = coords_t[ref_is].mean(0)
cov = safe_cov_torch(coords_t[ref_is])
inv = torch.linalg.inv(cov)
A = mahalanobis_torch(coords_t[out_i], mu, inv)
B_list = []
for o in spks_here:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
mu_o = coords_t[o_idxs].mean(0)
inv_o = torch.linalg.inv(safe_cov_torch(coords_t[o_idxs]))
B_list.append(mahalanobis_torch(coords_t[out_i], mu_o, inv_o))
B_min = torch.min(torch.stack(B_list)) if B_list else torch.tensor(0.0)
out[s] = (1 - A / (A + B_min + 1e-6)).item()
return out
device = min(ngpu - 1, 1)
device_str = f"cuda:{device}"
coords_t = torch.tensor(coords, device=device_str)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
stream = torch.cuda.Stream(device=device_str)
with torch.cuda.device(device):
with torch.cuda.stream(stream):
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu = coords_t[ref_is].mean(0)
cov = safe_cov_torch(coords_t[ref_is])
inv = torch.linalg.inv(cov)
A = mahalanobis_torch(coords_t[out_i], mu, inv)
B_list = []
for o in spks_here:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
mu_o = coords_t[o_idxs].mean(0)
inv_o = torch.linalg.inv(safe_cov_torch(coords_t[o_idxs]))
B_list.append(mahalanobis_torch(coords_t[out_i], mu_o, inv_o))
B_min = (
torch.min(torch.stack(B_list))
if B_list
else torch.tensor(0.0, device=device_str)
)
out[s] = (1 - A / (A + B_min + 1e-6)).item()
stream.synchronize()
return out
def compute_pm(coords, labels, pm_method, max_gpus=None):
"""
Computes the PM measure.
:param coords: coordinates on the manifold.
:param labels: assign source index per coordinate.
:param pm_method: "rank" or "gamma".
:param max_gpus: maximal number of GPUs to use.
:return: the PS measure.
"""
ngpu = get_gpu_count(max_gpus)
if ngpu == 0:
coords_t = torch.tensor(coords)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
d_idx = [i for i in idxs if i not in {ref_i, out_i}]
if len(d_idx) < 2:
out[s] = 0.0
continue
ref_v = coords_t[ref_i]
dist = coords_t[d_idx] - ref_v
N, D = dist.shape
cov = dist.T @ dist / (N - 1)
if torch.linalg.matrix_rank(cov) < D:
cov += torch.eye(D) * COV_TOL
inv = torch.linalg.inv(cov)
sq_dists = torch.stack(
[mahalanobis_torch(coords_t[i], ref_v, inv) ** 2 for i in d_idx]
)
d_out_sq = float(mahalanobis_torch(coords_t[out_i], ref_v, inv) ** 2)
pm_score = (
pm_tail_rank(d_out_sq, sq_dists)
if pm_method == "rank"
else pm_tail_gamma(d_out_sq, sq_dists)
)
out[s] = float(np.clip(pm_score, 0.0, 1.0))
return out
device = min(ngpu - 1, 1)
device_str = f"cuda:{device}"
coords_t = torch.tensor(coords, device=device_str)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
stream = torch.cuda.Stream(device=device_str)
with torch.cuda.device(device):
with torch.cuda.stream(stream):
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
d_idx = [i for i in idxs if i not in {ref_i, out_i}]
if len(d_idx) < 2:
out[s] = 0.0
continue
ref_v = coords_t[ref_i]
dist = coords_t[d_idx] - ref_v
N, D = dist.shape
cov = dist.T @ dist / (N - 1)
if torch.linalg.matrix_rank(cov) < D:
cov += torch.eye(D, device=device_str) * COV_TOL
inv = torch.linalg.inv(cov)
sq_dists = torch.stack(
[mahalanobis_torch(coords_t[i], ref_v, inv) ** 2 for i in d_idx]
)
d_out_sq = float(mahalanobis_torch(coords_t[out_i], ref_v, inv) ** 2)
pm_score = (
pm_tail_rank(d_out_sq, sq_dists)
if pm_method == "rank"
else pm_tail_gamma(d_out_sq, sq_dists)
)
out[s] = float(np.clip(pm_score, 0.0, 1.0))
stream.synchronize()
return out
def pm_ci_components_full(
coords_d, coords_rest, eigvals, labels, *, delta=0.05, K=1.0, C1=1.0, C2=1.0
):
"""
Computes the error radius and tail bounds for the PM measure.
:param coords_d: Retained diffusion maps coordinates.
:param coords_rest: Complement diffusion maps coordinates.
:param eigvals: Eigenvalues of the diffusion maps.
:param labels: Assign source index per coordinate
:param delta: 1-\delta is the confidence score.
:param K: Absolute constant.
:param C1: Absolute constant.
:param C2: Absolute constant.
:return: error radius and tail bounds for the PM measure.
"""
_EPS = 1e-12
def _safe_x(a, theta):
return a / max(theta, _EPS)
D = coords_d.shape[1]
m = coords_rest.shape[1]
if m == 0:
z = {s: 0.0 for s in {l.split("-")[0] for l in labels}}
return z.copy(), z.copy()
X_d = torch.tensor(
coords_d, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
X_c = torch.tensor(
coords_rest, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
spk_ids = sorted({l.split("-")[0] for l in labels})
bias_ci = {}
prob_ci = {}
for s in spk_ids:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
dist_is = [i for i in idxs if i not in {ref_i, out_i}]
n_p = len(dist_is)
if n_p < 2:
bias_ci[s] = 0.0
prob_ci[s] = 0.0
continue
ref_d = X_d[ref_i]
ref_c = X_c[ref_i]
D_mat = X_d[dist_is] - ref_d
C_mat = X_c[dist_is] - ref_c
Sigma_d = safe_cov_torch(D_mat)
Sigma_c = safe_cov_torch(C_mat)
C_dc = D_mat.T @ C_mat / (n_p - 1)
inv_Sigma_d = torch.linalg.inv(Sigma_d)
S_i = (
Sigma_c
- C_dc.T @ inv_Sigma_d @ C_dc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
S_inv = torch.linalg.inv(S_i)
diff_out_d = X_d[out_i] - ref_d
diff_out_c = X_c[out_i] - ref_c
r_out = diff_out_c - C_dc.T @ inv_Sigma_d @ diff_out_d
delta_Gi_a = float(r_out @ S_inv @ r_out)
r_list = []
for p in dist_is:
d_p = X_d[p] - ref_d
c_p = X_c[p] - ref_c
r_p = c_p - C_dc.T @ inv_Sigma_d @ d_p
r_list.append(r_p)
R_p = torch.stack(r_list, dim=0)
delta_Gi_p = torch.sum(R_p @ S_inv * R_p, dim=1)
delta_Gi_mu_max = float(delta_Gi_p.max())
mah_sq = torch.stack(
[(X_d[i] - ref_d) @ inv_Sigma_d @ (X_d[i] - ref_d) for i in dist_is]
)
mu_g = float(mah_sq.mean())
sigma2_g = float(mah_sq.var(unbiased=True) + 1e-12)
sigma_g = math.sqrt(sigma2_g)
full_sq = mah_sq + delta_Gi_p
mu_full = float(full_sq.mean())
sigma2_full = float(full_sq.var(unbiased=True) + 1e-12)
if sigma2_g == 0.0:
delta_Gi_k = delta_Gi_theta = 0.0
else:
factor = delta_Gi_mu_max * n_p / (n_p - 1)
delta_Gi_k = 1.0 * factor * (mu_full + mu_g) / sigma2_g
delta_Gi_theta = 1.0 * factor * (sigma2_full + sigma2_g) / (mu_g**2 + 1e-9)
k_d = (mu_g**2) / max(sigma2_g, 1e-12)
theta_d = sigma2_g / max(mu_g, 1e-12)
a_d = float(diff_out_d @ inv_Sigma_d @ diff_out_d)
pm_center = gammaincc(k_d, _safe_x(a_d, theta_d))
corner_vals = []
for s_k in (-1, 1):
for s_theta in (-1, 1):
for s_a in (-1, 1):
k_c = max(k_d + s_k * delta_Gi_k, 1e-6)
theta_c = max(theta_d + s_theta * delta_Gi_theta, 1e-6)
a_c = max(a_d + s_a * delta_Gi_a, 1e-8)
corner_vals.append(gammaincc(k_c, _safe_x(a_c, theta_c)))
bias_ci[s] = max(abs(v - pm_center) for v in corner_vals)
R_sq = float(mah_sq.max()) + 1e-12
log_term = math.log(6.0 / delta)
eps_mu = math.sqrt(2 * sigma2_g * log_term / n_p) + 3 * R_sq * log_term / n_p
eps_sigma = (
math.sqrt(2 * R_sq**2 * log_term / n_p) + 3 * R_sq**2 * log_term / n_p
)
g1_x = 2.0 * mu_g / (sigma2_g + 1e-9)
g1_y = -2.0 * mu_g**2 / (sigma_g**3 + 1e-9)
g2_x = -sigma2_g / (mu_g**2 + 1e-9)
g2_y = 2.0 * sigma_g / (mu_g + 1e-9)
delta_k = min(abs(g1_x) * eps_mu + abs(g1_y) * eps_sigma, 0.5 * k_d)
delta_theta = min(abs(g2_x) * eps_mu + abs(g2_y) * eps_sigma, 0.5 * theta_d)
delta_a = min(R_sq * math.sqrt(2 * log_term / n_p), 0.5 * a_d + 1e-12)
pm_corners = []
for s_k in (-1, 1):
for s_theta in (-1, 1):
for s_a in (-1, 1):
k_c = k_d + s_k * delta_k
theta_c = theta_d + s_theta * delta_theta
a_c = max(a_d + s_a * delta_a, 1e-8)
pm_corners.append(gammaincc(k_c, _safe_x(a_c, theta_c)))
prob_ci[s] = max(abs(pm - pm_center) for pm in pm_corners)
return bias_ci, prob_ci
def ps_ci_components_full(coords_d, coords_rest, eigvals, labels, *, delta=0.05):
"""
Computes the error radius and tail bounds for the PS measure.
:param coords_d: Retained diffusion maps coordinates.
:param coords_rest: Complement diffusion maps coordinates.
:param eigvals: Eigenvalues of the diffusion maps.
:param labels: Assign source index per coordinate
:param delta: 1-\delta is the confidence score.
:return: error radius and tail bounds for the PS measure.
"""
def _mean_dev(lam_max, delta, n_eff):
return math.sqrt(2 * lam_max * math.log(2 / delta) / n_eff)
def _rel_cov_dev(lam_max, trace, delta, n_eff, C=1.0):
r = trace / lam_max
abs_dev = (
C * lam_max * (math.sqrt(r / n_eff) + (r + math.log(2 / delta)) / n_eff)
)
return abs_dev / lam_max
def _maha_eps_m(a_hat, lam_min, lam_max, mean_dev, rel_cov_dev):
term1 = 2 * math.sqrt(a_hat) * mean_dev * math.sqrt(lam_max / lam_min)
term2 = a_hat * rel_cov_dev
return term1 + term2
D = coords_d.shape[1]
m = coords_rest.shape[1]
if m == 0:
z = {s: 0.0 for s in set(l.split("-")[0] for l in labels)}
return z.copy(), z.copy()
X_d = torch.tensor(
coords_d, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
X_c = torch.tensor(
coords_rest, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
spk_ids = sorted({l.split("-")[0] for l in labels})
bias = {}
prob = {}
for s in spk_ids:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu_d = X_d[ref_is].mean(0)
mu_c = X_c[ref_is].mean(0)
Sigma_d = safe_cov_torch(X_d[ref_is])
Sigma_c = safe_cov_torch(X_c[ref_is])
C_dc = (X_d[ref_is] - mu_d).T @ (X_c[ref_is] - mu_c) / (len(ref_is) - 1)
inv_Sd = torch.linalg.inv(Sigma_d)
lam_min = torch.linalg.eigvalsh(Sigma_d).min().clamp_min(1e-9).item()
lam_max = torch.linalg.eigvalsh(Sigma_d).max()
trace = torch.trace(Sigma_d).item()
diff_d = X_d[out_i] - mu_d
diff_c = X_c[out_i] - mu_c
A_d = float(mahalanobis_torch(X_d[out_i], mu_d, inv_Sd))
r_i = diff_c - C_dc.T @ inv_Sd @ diff_d
S_i = (
Sigma_c
- C_dc.T @ inv_Sd @ C_dc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
term_i = math.sqrt(float(r_i @ torch.linalg.solve(S_i, r_i)))
B_d, term_j = float("inf"), 0.0
Sig_o = None
for o in spk_ids:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
muo_d = X_d[o_idxs].mean(0)
muo_c = X_c[o_idxs].mean(0)
Sig_o_tmp = safe_cov_torch(X_d[o_idxs])
inv_So = torch.linalg.inv(Sig_o_tmp)
this_B = float(mahalanobis_torch(X_d[out_i], muo_d, inv_So))
if this_B < B_d:
B_d = this_B
Sig_o = Sig_o_tmp
diff_do = X_d[out_i] - muo_d
diff_co = X_c[out_i] - muo_c
C_oc = (
(X_d[o_idxs] - muo_d).T @ (X_c[o_idxs] - muo_c) / (len(o_idxs) - 1)
)
r_j = diff_co - C_oc.T @ inv_So @ diff_do
S_j = (
safe_cov_torch(X_c[o_idxs])
- C_oc.T @ inv_So @ C_oc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
term_j = math.sqrt(float(r_j @ torch.linalg.solve(S_j, r_j)))
denom = A_d + B_d
bias[s] = (B_d * term_i + A_d * term_j) / (denom**2)
if Sig_o is not None:
lam_min_o = torch.linalg.eigvalsh(Sig_o).min().clamp_min(1e-9).item()
lam_max_o = torch.linalg.eigvalsh(Sig_o).max().item()
trace_o = torch.trace(Sig_o).item()
n_eff = max(int(0.7 * len(ref_is)), 3)
RIDGE = 0.05
lam_min_eff = max(lam_min, RIDGE * lam_max.item())
lam_min_o_eff = max(lam_min_o, RIDGE * lam_max_o)
eps_i_sg = _maha_eps_m(
A_d,
lam_min_eff,
lam_max.item(),
_mean_dev(lam_max.item(), delta / 2, n_eff),
_rel_cov_dev(lam_max.item(), trace, delta / 2, n_eff),
)
eps_j_sg = _maha_eps_m(
B_d,
lam_min_o_eff,
lam_max_o,
_mean_dev(lam_max_o, delta / 2, n_eff),
_rel_cov_dev(lam_max_o, trace_o, delta / 2, n_eff),
)
grad_l2 = math.hypot(A_d, B_d) / (A_d + B_d) ** 2
ps_radius = grad_l2 * math.hypot(eps_i_sg, eps_j_sg)
prob[s] = min(1.0, ps_radius)
else:
prob[s] = 0.0
return bias, prob
|