MAPSS-measures / app.py
AIvry's picture
Create app.py
226ddaf verified
raw
history blame
11.1 kB
import gradio as gr
import zipfile
import tempfile
import shutil
from pathlib import Path
import pandas as pd
import json
import os
import traceback
import gc
# Import your modules
from engine import compute_mapss_measures
from models import get_model_config, cleanup_all_models
from config import DEFAULT_ALPHA
from utils import clear_gpu_memory
def process_audio_files(zip_file, model_name, layer, alpha):
"""
Process uploaded ZIP file containing audio mixtures.
Expected ZIP structure:
- references/: Contains N reference audio files
- outputs/: Contains N output audio files
"""
if zip_file is None:
return None, "Please upload a ZIP file"
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
try:
# Extract ZIP file
extract_path = temp_path / "extracted"
extract_path.mkdir(exist_ok=True)
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(extract_path)
# Find references and outputs directories
refs_dir = None
outs_dir = None
# Check for standard structure
for item in extract_path.iterdir():
if item.is_dir():
if item.name.lower() in ['references', 'refs', 'reference']:
refs_dir = item
elif item.name.lower() in ['outputs', 'outs', 'output', 'separated']:
outs_dir = item
# If not found at root, check one level deeper
if refs_dir is None or outs_dir is None:
for item in extract_path.iterdir():
if item.is_dir():
for subitem in item.iterdir():
if subitem.is_dir():
if subitem.name.lower() in ['references', 'refs', 'reference']:
refs_dir = subitem
elif subitem.name.lower() in ['outputs', 'outs', 'output', 'separated']:
outs_dir = subitem
if refs_dir is None or outs_dir is None:
return None, "Could not find 'references' and 'outputs' directories in the ZIP file"
# Get audio files
ref_files = sorted([f for f in refs_dir.glob("*.wav")])
out_files = sorted([f for f in outs_dir.glob("*.wav")])
if len(ref_files) == 0:
return None, "No reference WAV files found"
if len(out_files) == 0:
return None, "No output WAV files found"
# Create manifest
manifest = [{
"mixture_id": "uploaded_mixture",
"references": [str(f) for f in ref_files],
"systems": {
"uploaded_system": [str(f) for f in out_files]
}
}]
# Validate model and layer
allowed_models = set(get_model_config(0).keys())
if model_name not in allowed_models:
return None, f"Invalid model. Allowed: {', '.join(sorted(allowed_models))}"
# Set default layer if needed
if model_name == "raw":
layer_final = 0
else:
model_defaults = {
"wavlm": 24, "wav2vec2": 24, "hubert": 24,
"wavlm_base": 12, "wav2vec2_base": 12, "hubert_base": 12,
"wav2vec2_xlsr": 24, "ast": 12
}
layer_final = layer if layer is not None else model_defaults.get(model_name, 12)
# Run experiment with compute_mapss_measures
results_dir = compute_mapss_measures(
models=[model_name],
mixtures=manifest,
layer=layer_final,
alpha=alpha,
verbose=True,
max_gpus=1, # Limit to 1 GPU for HF Space
add_ci=False # Disable CI for faster processing
)
# Create output ZIP with results
output_zip = temp_path / "results.zip"
with zipfile.ZipFile(output_zip, 'w') as zipf:
# Add all CSV files from results
results_path = Path(results_dir)
for csv_file in results_path.rglob("*.csv"):
arcname = str(csv_file.relative_to(results_path.parent))
zipf.write(csv_file, arcname)
# Add params.json
params_file = results_path / "params.json"
if params_file.exists():
zipf.write(params_file, str(params_file.relative_to(results_path.parent)))
# Add manifest
manifest_file = results_path / "manifest_canonical.json"
if manifest_file.exists():
zipf.write(manifest_file, str(manifest_file.relative_to(results_path.parent)))
# Read the ZIP file to return
with open(output_zip, 'rb') as f:
output_data = f.read()
# Create a proper file object for Gradio
output_file_path = temp_path / "download_results.zip"
with open(output_file_path, 'wb') as f:
f.write(output_data)
return str(output_file_path), "Processing completed successfully!"
except Exception as e:
error_msg = f"Error processing files: {str(e)}\n{traceback.format_exc()}"
return None, error_msg
finally:
# Ensure cleanup happens
cleanup_all_models()
clear_gpu_memory()
gc.collect()
# Create Gradio interface
def create_interface():
with gr.Blocks(title="MAPSS - Multi-source Audio Perceptual Separation Scores") as demo:
gr.Markdown("""
# MAPSS: Multi-source Audio Perceptual Separation Scores
This tool evaluates audio source separation quality using Perceptual Similarity (PS) and Perceptual Matching (PM) metrics.
## How to use:
1. **Prepare your audio files**: Create a ZIP file with the following structure:
```
your_mixture.zip
β”œβ”€β”€ references/ # Original clean sources
β”‚ β”œβ”€β”€ speaker1.wav
β”‚ β”œβ”€β”€ speaker2.wav
β”‚ └── ...
└── outputs/ # Separated outputs from your algorithm
β”œβ”€β”€ separated1.wav
β”œβ”€β”€ separated2.wav
└── ...
```
2. **Upload the ZIP file** using the file uploader below
3. **Select model and parameters**
4. **Click "Process"** to run the evaluation
5. **Download the results** as a ZIP file containing CSV files with PS/PM scores
## Models available:
- **raw**: Raw waveform features (no model)
- **wavlm**: WavLM Large model (best overall performance)
- **wav2vec2**: Wav2Vec2 Large model
- **hubert**: HuBERT Large model
- **wavlm_base**: WavLM Base model (faster, good performance)
- **wav2vec2_base**: Wav2Vec2 Base model
- **hubert_base**: HuBERT Base model
- **wav2vec2_xlsr**: Wav2Vec2 XLSR-53 model (multilingual)
- **ast**: Audio Spectrogram Transformer
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload ZIP file with audio mixtures",
file_types=[".zip"],
type="filepath"
)
model_dropdown = gr.Dropdown(
choices=["raw", "wavlm", "wav2vec2", "hubert",
"wavlm_base", "wav2vec2_base", "hubert_base",
"wav2vec2_xlsr", "ast"],
value="wav2vec2_base",
label="Select embedding model"
)
layer_slider = gr.Slider(
minimum=0,
maximum=24,
step=1,
value=12,
label="Layer (leave at default for automatic selection)"
)
alpha_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=DEFAULT_ALPHA,
label="Diffusion maps alpha parameter"
)
process_btn = gr.Button("Process Audio Files", variant="primary")
with gr.Column():
output_file = gr.File(
label="Download Results (ZIP)",
type="filepath"
)
status_text = gr.Textbox(
label="Status",
lines=3,
max_lines=10
)
gr.Markdown("""
## Output format:
The results ZIP will contain:
- `ps_scores_{model}.csv`: Perceptual Similarity scores for each speaker/source
- `pm_scores_{model}.csv`: Perceptual Matching scores for each speaker/source
- `params.json`: Experiment parameters
- `manifest_canonical.json`: Processed file manifest
## Score interpretation:
- **PS (Perceptual Similarity)**: 0-1 score, higher is better. Measures how well the separated output matches the reference compared to other sources.
- **PM (Perceptual Matching)**: 0-1 score, higher is better. Measures robustness to audio distortions.
## Notes:
- Processing may take several minutes depending on the audio length and model
- Audio files are automatically resampled to 16kHz
- The tool automatically matches outputs to references based on correlation
- For best results, ensure equal number of reference and output files
## Citation:
If you use this tool in your research, please cite our paper (details coming soon).
""")
# Set up the processing
process_btn.click(
fn=process_audio_files,
inputs=[file_input, model_dropdown, layer_slider, alpha_slider],
outputs=[output_file, status_text]
)
# Add examples if you want
gr.Examples(
examples=[
# You can add example ZIP files here if you have them
],
inputs=[file_input]
)
return demo
# Create and launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch()