File size: 5,416 Bytes
65e3d9a
1f9735b
 
 
 
9b4432e
1f9735b
bc45c0c
 
ad1351e
1f9735b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987341e
 
 
6cbf495
2824ce7
 
 
6cbf495
2824ce7
9b4432e
 
2824ce7
9b4432e
 
 
 
2824ce7
 
 
 
 
6cbf495
1f9735b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7e62
1f9735b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57060b1
1f9735b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
from bs4 import BeautifulSoup
from openai import OpenAI
from dotenv import load_dotenv
import os
from streamlit.components.v1 import html 
load_dotenv()

os.makedirs(".streamlit", exist_ok=True)
hf_api_key = os.getenv("SECRET")

if not hf_api_key:
    st.error("❌ API key not found. Please set HUGGINGFACE_API_KEY in your .env file.")
    st.stop()

# ==== Initialize Client ====
client = OpenAI(
    base_url="https://router.huggingface.co/v1",
    api_key=hf_api_key,
)

# ==== Streamlit Page Setup ====
st.set_page_config(page_title="OSS ChatGPT", layout="wide")
st.title("πŸ€– ChatGPT")

# ==== Sidebar ====
st.sidebar.title("πŸ› οΈ Settings")
model_choice = st.sidebar.selectbox("Choose a model", [
    "openai/gpt-oss-20b:hyperbolic",
    "openai/gpt-oss-120b:hyperbolic"
])



# if st.sidebar.button("🧹 Clear Chat"):
#     st.session_state.messages = []
#     st.rerun()
def clear_chat():
    # COMPLETELY reset session state (not just messages)
    st.session_state.clear()  # πŸ”₯ This wipes ALL session variables
    # Then re-initialize just what you need
    st.session_state.messages = []
    # Force a hard refresh (JavaScript method)
    js = """
    <script>
        window.parent.location.reload(true);
    </script>
    """
    html(js)

st.sidebar.button(
    "🧹 Clear Chat", 
    on_click=clear_chat, 
    key="clear_chat_button_unique_123"  # Unique key prevents duplicate ID errors
)


# ==== Session Initialization ====
if "messages" not in st.session_state:
    st.session_state.messages = []

# ==== LaTeX Rendering Helper ====
def render_markdown_with_latex(text: str):
    mathjax_script = """
    <script type="text/javascript">
      MathJax = {
        tex: {
          inlineMath: [['$', '$']],
          displayMath: [['$$', '$$']]
        },
        svg: {
          fontCache: 'global'
        }
      };
    </script>
    <script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
    """
    st.markdown(mathjax_script, unsafe_allow_html=True)
    st.markdown(text, unsafe_allow_html=True)

    
for i, msg in enumerate(st.session_state.messages):
    with st.chat_message(msg["role"]):
        if msg["role"] == "assistant":
            # Check if content contains thinking pattern
            if msg["content"].startswith("<think>") and "</think>" in msg["content"]:
                # Extract thinking and response parts
                thinking_part = msg["content"].split("<think>")[1].split("</think>")[0].strip()
                response_part = msg["content"].split("</think>")[1].strip()
                
                # Display the main response
                render_markdown_with_latex(response_part)
                
                # Create expander for thinking
                with st.expander("πŸ’­ Show Thinking"):
                    st.markdown(f"<span style='color: #666; font-style: italic'>{thinking_part}</span>", 
                               unsafe_allow_html=True)
            else:
                render_markdown_with_latex(msg["content"])
        else:
            # Display user messages
            render_markdown_with_latex(msg["content"])

# ==== Chat Input 
if prompt := st.chat_input("Type your message...",key="unique_chat_input_key"):
    print(f"=> {prompt}")
    with st.chat_message("user"):
        st.markdown(prompt)
    
    # Add user message to history
    st.session_state.messages.append({"role": "user", "content": prompt})

    try:
        with st.chat_message("assistant"):
            response_placeholder = st.empty()

            with st.spinner("Thinking..."):
                completion = client.chat.completions.create(
                    model=model_choice,
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ]
                )
                raw = completion.choices[0].message.content

                # Parse thinking and response
                if "<think>" in raw and "</think>" in raw:
                    thinking_part = raw.split("<think>")[1].split("</think>")[0].strip()
                    response_part = raw.split("</think>")[1].strip()

                    # Display main response
                    clean_response = BeautifulSoup(response_part, "html.parser").get_text()
                    with st.expander("πŸ’­ Show Thinking"):
                        st.markdown(f"<span style='color: #666; font-style: italic'>{thinking_part}</span>", 
                               unsafe_allow_html=True)
                    response_placeholder.markdown(clean_response)
                    # Store both parts in history
                    full_content = f"<think>{thinking_part}</think>{clean_response}"
                    
                else:
                    clean_response = BeautifulSoup(raw, "html.parser").get_text()
                    response_placeholder.markdown(clean_response)
                    full_content = clean_response

            # Add assistant response to history
            st.session_state.messages.append({"role": "assistant", "content": full_content})

    except Exception as e:
        error_msg = f"❌ Error: {str(e)}"
        with st.chat_message("assistant"):
            st.error(error_msg)
        st.session_state.messages.append({"role": "assistant", "content": error_msg})