Spaces:
Running
Running
| import threading | |
| from typing import Any | |
| import insightface | |
| import roop.globals | |
| from roop.typing import Frame, Face | |
| import cv2 | |
| import numpy as np | |
| from skimage import transform as trans | |
| from roop.capturer import get_video_frame | |
| from roop.utilities import resolve_relative_path, conditional_thread_semaphore | |
| FACE_ANALYSER = None | |
| #THREAD_LOCK_ANALYSER = threading.Lock() | |
| #THREAD_LOCK_SWAPPER = threading.Lock() | |
| FACE_SWAPPER = None | |
| def get_face_analyser() -> Any: | |
| global FACE_ANALYSER | |
| with conditional_thread_semaphore(): | |
| if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis: | |
| model_path = resolve_relative_path('..') | |
| # removed genderage | |
| allowed_modules = roop.globals.g_desired_face_analysis | |
| roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis | |
| if roop.globals.CFG.force_cpu: | |
| print("Forcing CPU for Face Analysis") | |
| FACE_ANALYSER = insightface.app.FaceAnalysis( | |
| name="buffalo_l", | |
| root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules | |
| ) | |
| else: | |
| FACE_ANALYSER = insightface.app.FaceAnalysis( | |
| name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules | |
| ) | |
| FACE_ANALYSER.prepare( | |
| ctx_id=0, | |
| det_size=(640, 640) if roop.globals.default_det_size else (320, 320), | |
| ) | |
| return FACE_ANALYSER | |
| def get_first_face(frame: Frame) -> Any: | |
| try: | |
| faces = get_face_analyser().get(frame) | |
| return min(faces, key=lambda x: x.bbox[0]) | |
| # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0] | |
| except: | |
| return None | |
| def get_all_faces(frame: Frame) -> Any: | |
| try: | |
| faces = get_face_analyser().get(frame) | |
| return sorted(faces, key=lambda x: x.bbox[0]) | |
| except: | |
| return None | |
| def extract_face_images(source_filename, video_info, extra_padding=-1.0): | |
| face_data = [] | |
| source_image = None | |
| if video_info[0]: | |
| frame = get_video_frame(source_filename, video_info[1]) | |
| if frame is not None: | |
| source_image = frame | |
| else: | |
| return face_data | |
| else: | |
| source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR) | |
| faces = get_all_faces(source_image) | |
| if faces is None: | |
| return face_data | |
| i = 0 | |
| for face in faces: | |
| (startX, startY, endX, endY) = face["bbox"].astype("int") | |
| startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) | |
| if extra_padding > 0.0: | |
| if source_image.shape[:2] == (512, 512): | |
| i += 1 | |
| face_data.append([face, source_image]) | |
| continue | |
| found = False | |
| for i in range(1, 3): | |
| (startX, startY, endX, endY) = face["bbox"].astype("int") | |
| startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image) | |
| cutout_padding = extra_padding | |
| # top needs extra room for detection | |
| padding = int((endY - startY) * cutout_padding) | |
| oldY = startY | |
| startY -= padding | |
| factor = 0.25 if i == 1 else 0.5 | |
| cutout_padding = factor | |
| padding = int((endY - oldY) * cutout_padding) | |
| endY += padding | |
| padding = int((endX - startX) * cutout_padding) | |
| startX -= padding | |
| endX += padding | |
| startX, endX, startY, endY = clamp_cut_values( | |
| startX, endX, startY, endY, source_image | |
| ) | |
| face_temp = source_image[startY:endY, startX:endX] | |
| face_temp = resize_image_keep_content(face_temp) | |
| testfaces = get_all_faces(face_temp) | |
| if testfaces is not None and len(testfaces) > 0: | |
| i += 1 | |
| face_data.append([testfaces[0], face_temp]) | |
| found = True | |
| break | |
| if not found: | |
| print("No face found after resizing, this shouldn't happen!") | |
| continue | |
| face_temp = source_image[startY:endY, startX:endX] | |
| if face_temp.size < 1: | |
| continue | |
| i += 1 | |
| face_data.append([face, face_temp]) | |
| return face_data | |
| def clamp_cut_values(startX, endX, startY, endY, image): | |
| if startX < 0: | |
| startX = 0 | |
| if endX > image.shape[1]: | |
| endX = image.shape[1] | |
| if startY < 0: | |
| startY = 0 | |
| if endY > image.shape[0]: | |
| endY = image.shape[0] | |
| return startX, endX, startY, endY | |
| def face_offset_top(face: Face, offset): | |
| face["bbox"][1] += offset | |
| face["bbox"][3] += offset | |
| lm106 = face.landmark_2d_106 | |
| add = np.full_like(lm106, [0, offset]) | |
| face["landmark_2d_106"] = lm106 + add | |
| return face | |
| def resize_image_keep_content(image, new_width=512, new_height=512): | |
| dim = None | |
| (h, w) = image.shape[:2] | |
| if h > w: | |
| r = new_height / float(h) | |
| dim = (int(w * r), new_height) | |
| else: | |
| # Calculate the ratio of the width and construct the dimensions | |
| r = new_width / float(w) | |
| dim = (new_width, int(h * r)) | |
| image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) | |
| (h, w) = image.shape[:2] | |
| if h == new_height and w == new_width: | |
| return image | |
| resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype) | |
| offs = (new_width - w) if h == new_height else (new_height - h) | |
| startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1 | |
| offs = int(offs // 2) | |
| if h == new_height: | |
| resize_img[0:new_height, startoffs : new_width - offs] = image | |
| else: | |
| resize_img[startoffs : new_height - offs, 0:new_width] = image | |
| return resize_img | |
| def rotate_image_90(image, rotate=True): | |
| if rotate: | |
| return np.rot90(image) | |
| else: | |
| return np.rot90(image, 1, (1, 0)) | |
| def rotate_anticlockwise(frame): | |
| return rotate_image_90(frame) | |
| def rotate_clockwise(frame): | |
| return rotate_image_90(frame, False) | |
| def rotate_image_180(image): | |
| return np.flip(image, 0) | |
| # alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py | |
| arcface_dst = np.array( | |
| [ | |
| [38.2946, 51.6963], | |
| [73.5318, 51.5014], | |
| [56.0252, 71.7366], | |
| [41.5493, 92.3655], | |
| [70.7299, 92.2041], | |
| ], | |
| dtype=np.float32, | |
| ) | |
| def estimate_norm(lmk, image_size=112): | |
| assert lmk.shape == (5, 2) | |
| if image_size % 112 == 0: | |
| ratio = float(image_size) / 112.0 | |
| diff_x = 0 | |
| elif image_size % 128 == 0: | |
| ratio = float(image_size) / 128.0 | |
| diff_x = 8.0 * ratio | |
| elif image_size % 512 == 0: | |
| ratio = float(image_size) / 512.0 | |
| diff_x = 32.0 * ratio | |
| dst = arcface_dst * ratio | |
| dst[:, 0] += diff_x | |
| tform = trans.SimilarityTransform() | |
| tform.estimate(lmk, dst) | |
| M = tform.params[0:2, :] | |
| return M | |
| # aligned, M = norm_crop2(f[1], face.kps, 512) | |
| def align_crop(img, landmark, image_size=112, mode="arcface"): | |
| M = estimate_norm(landmark, image_size) | |
| warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
| return warped, M | |
| def square_crop(im, S): | |
| if im.shape[0] > im.shape[1]: | |
| height = S | |
| width = int(float(im.shape[1]) / im.shape[0] * S) | |
| scale = float(S) / im.shape[0] | |
| else: | |
| width = S | |
| height = int(float(im.shape[0]) / im.shape[1] * S) | |
| scale = float(S) / im.shape[1] | |
| resized_im = cv2.resize(im, (width, height)) | |
| det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
| det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im | |
| return det_im, scale | |
| def transform(data, center, output_size, scale, rotation): | |
| scale_ratio = scale | |
| rot = float(rotation) * np.pi / 180.0 | |
| # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
| t1 = trans.SimilarityTransform(scale=scale_ratio) | |
| cx = center[0] * scale_ratio | |
| cy = center[1] * scale_ratio | |
| t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
| t3 = trans.SimilarityTransform(rotation=rot) | |
| t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) | |
| t = t1 + t2 + t3 + t4 | |
| M = t.params[0:2] | |
| cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) | |
| return cropped, M | |
| def trans_points2d(pts, M): | |
| new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
| for i in range(pts.shape[0]): | |
| pt = pts[i] | |
| new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
| new_pt = np.dot(M, new_pt) | |
| # print('new_pt', new_pt.shape, new_pt) | |
| new_pts[i] = new_pt[0:2] | |
| return new_pts | |
| def trans_points3d(pts, M): | |
| scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
| # print(scale) | |
| new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
| for i in range(pts.shape[0]): | |
| pt = pts[i] | |
| new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
| new_pt = np.dot(M, new_pt) | |
| # print('new_pt', new_pt.shape, new_pt) | |
| new_pts[i][0:2] = new_pt[0:2] | |
| new_pts[i][2] = pts[i][2] * scale | |
| return new_pts | |
| def trans_points(pts, M): | |
| if pts.shape[1] == 2: | |
| return trans_points2d(pts, M) | |
| else: | |
| return trans_points3d(pts, M) | |
| def create_blank_image(width, height): | |
| img = np.zeros((height, width, 4), dtype=np.uint8) | |
| img[:] = [0,0,0,0] | |
| return img | |