Spaces:
Running
Running
new model
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
=========================================================
|
| 3 |
-
app.py — Green Greta (Gradio + TF/Keras 3 + Local HF + LangChain v0.2)
|
| 4 |
=========================================================
|
| 5 |
"""
|
| 6 |
|
|
@@ -8,6 +8,14 @@ import os
|
|
| 8 |
import json
|
| 9 |
import shutil
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import tensorflow as tf
|
| 13 |
from tensorflow import keras
|
|
@@ -18,12 +26,10 @@ try:
|
|
| 18 |
from fake_useragent import UserAgent
|
| 19 |
user_agent = UserAgent().random
|
| 20 |
except Exception:
|
| 21 |
-
user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 "
|
| 22 |
-
"(KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
|
| 23 |
header_template = {"User-Agent": user_agent}
|
| 24 |
|
| 25 |
-
|
| 26 |
-
# --- LangChain v0.2 family ---
|
| 27 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 28 |
from langchain_core.prompts import ChatPromptTemplate
|
| 29 |
from langchain_core.output_parsers import PydanticOutputParser
|
|
@@ -32,37 +38,35 @@ from langchain.memory import ConversationBufferMemory
|
|
| 32 |
from langchain_community.document_loaders import WebBaseLoader
|
| 33 |
from langchain_community.vectorstores import Chroma
|
| 34 |
|
| 35 |
-
# Embeddings (prefer langchain-huggingface
|
| 36 |
try:
|
| 37 |
from langchain_huggingface import HuggingFaceEmbeddings # pip install -U langchain-huggingface
|
| 38 |
except ImportError:
|
| 39 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 40 |
|
| 41 |
-
# Context compression
|
| 42 |
from langchain.retrievers import ContextualCompressionRetriever
|
| 43 |
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
from huggingface_hub import snapshot_download
|
| 49 |
|
| 50 |
-
# === LLM endpoint moderno (
|
| 51 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 52 |
|
| 53 |
# Theming + URL list
|
| 54 |
import theme
|
| 55 |
from url_list import URLS
|
| 56 |
-
|
| 57 |
theme = theme.Theme()
|
| 58 |
|
| 59 |
-
# (Opcional) reducir telemetría/ruido en logs de Space
|
| 60 |
-
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 61 |
-
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
| 62 |
-
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 63 |
-
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
# =========================================================
|
| 67 |
# 1) IMAGE CLASSIFICATION — Keras 3-safe SavedModel loading
|
| 68 |
# =========================================================
|
|
@@ -76,7 +80,7 @@ image_model = keras.layers.TFSMLayer(model_dir, call_endpoint=MODEL_SERVING_SIGN
|
|
| 76 |
class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
| 77 |
|
| 78 |
def predict_image(input_image: Image.Image):
|
| 79 |
-
"""
|
| 80 |
img = input_image.convert("RGB").resize((224, 224))
|
| 81 |
x = tf.keras.preprocessing.image.img_to_array(img)
|
| 82 |
x = tf.keras.applications.efficientnet.preprocess_input(x)
|
|
@@ -100,7 +104,6 @@ image_gradio_app = gr.Interface(
|
|
| 100 |
theme=theme,
|
| 101 |
)
|
| 102 |
|
| 103 |
-
|
| 104 |
# ============================================
|
| 105 |
# 2) KNOWLEDGE LOADING (RAG: loader + splitter)
|
| 106 |
# ============================================
|
|
@@ -122,44 +125,47 @@ def safe_load_all_urls(urls):
|
|
| 122 |
|
| 123 |
all_loaded_docs = safe_load_all_urls(URLS)
|
| 124 |
|
| 125 |
-
# Chunks
|
| 126 |
base_splitter = RecursiveCharacterTextSplitter(
|
| 127 |
-
chunk_size=
|
| 128 |
-
chunk_overlap=
|
| 129 |
length_function=len,
|
| 130 |
)
|
| 131 |
docs = base_splitter.split_documents(all_loaded_docs)
|
| 132 |
|
| 133 |
-
# Embeddings
|
| 134 |
-
embeddings = HuggingFaceEmbeddings(model_name="
|
| 135 |
|
| 136 |
# Vector store
|
| 137 |
persist_directory = "docs/chroma/"
|
| 138 |
shutil.rmtree(persist_directory, ignore_errors=True)
|
| 139 |
-
|
| 140 |
vectordb = Chroma.from_documents(
|
| 141 |
documents=docs,
|
| 142 |
embedding=embeddings,
|
| 143 |
persist_directory=persist_directory,
|
| 144 |
)
|
| 145 |
|
| 146 |
-
# Base retriever
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
# --- Compresión
|
| 150 |
try:
|
| 151 |
from langchain_text_splitters import TokenTextSplitter
|
| 152 |
-
splitter_for_compression = TokenTextSplitter(chunk_size=
|
| 153 |
except Exception:
|
| 154 |
from langchain_text_splitters import RecursiveCharacterTextSplitter as FallbackSplitter
|
| 155 |
splitter_for_compression = FallbackSplitter(chunk_size=300, chunk_overlap=50)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
compression_retriever = ContextualCompressionRetriever(
|
| 159 |
-
base_retriever=retriever,
|
| 160 |
-
base_compressor=compressor,
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
|
| 164 |
# ======================================
|
| 165 |
# 3) PROMPT & Pydantic schema parsing
|
|
@@ -171,44 +177,61 @@ class FinalAnswer(BaseModel):
|
|
| 171 |
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
| 172 |
|
| 173 |
SYSTEM_TEMPLATE = (
|
| 174 |
-
"
|
| 175 |
-
"
|
| 176 |
-
"
|
| 177 |
-
"
|
|
|
|
|
|
|
| 178 |
"{format_instructions}"
|
| 179 |
)
|
| 180 |
|
| 181 |
-
qa_prompt = ChatPromptTemplate.from_template(
|
| 182 |
-
|
| 183 |
-
partial_variables={"format_instructions": parser.get_format_instructions()},
|
| 184 |
)
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
#
|
| 189 |
endpoint = HuggingFaceEndpoint(
|
| 190 |
repo_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 191 |
-
task="
|
| 192 |
-
max_new_tokens=
|
| 193 |
-
temperature=0.
|
| 194 |
-
top_k=
|
| 195 |
-
repetition_penalty=1.
|
| 196 |
return_full_text=False,
|
| 197 |
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
|
| 198 |
timeout=120,
|
| 199 |
model_kwargs={},
|
| 200 |
)
|
| 201 |
|
|
|
|
| 202 |
llm = ChatHuggingFace(llm=endpoint)
|
| 203 |
|
| 204 |
# ===========================================
|
| 205 |
-
# 5) Chain (memory + robust JSON
|
| 206 |
# ===========================================
|
|
|
|
|
|
|
| 207 |
memory = ConversationBufferMemory(
|
| 208 |
memory_key="chat_history",
|
| 209 |
return_messages=True,
|
| 210 |
)
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 213 |
llm=llm,
|
| 214 |
retriever=compression_retriever,
|
|
@@ -247,13 +270,6 @@ def chat_interface(question, history):
|
|
| 247 |
f"Detalle técnico: {e}"
|
| 248 |
)
|
| 249 |
|
| 250 |
-
chatbot_gradio_app = gr.ChatInterface(
|
| 251 |
-
fn=chat_interface,
|
| 252 |
-
title="<span style='color: rgb(243, 239, 224);'>Green Greta</span>",
|
| 253 |
-
height=600,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
# ============================
|
| 258 |
# 6) Banner / Welcome content
|
| 259 |
# ============================
|
|
@@ -280,14 +296,30 @@ banner_tab_content = """
|
|
| 280 |
"""
|
| 281 |
banner_tab = gr.Markdown(banner_tab_content)
|
| 282 |
|
| 283 |
-
|
| 284 |
# ============================
|
| 285 |
# 7) Gradio app (tabs + run)
|
| 286 |
# ============================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
app = gr.TabbedInterface(
|
| 288 |
[banner_tab, image_gradio_app, chatbot_gradio_app],
|
| 289 |
tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
|
| 290 |
theme=theme,
|
|
|
|
| 291 |
)
|
| 292 |
|
| 293 |
app.queue()
|
|
|
|
| 1 |
"""
|
| 2 |
=========================================================
|
| 3 |
+
app.py — Green Greta (Gradio + TF/Keras 3 + Local HF + LangChain v0.2/0.3)
|
| 4 |
=========================================================
|
| 5 |
"""
|
| 6 |
|
|
|
|
| 8 |
import json
|
| 9 |
import shutil
|
| 10 |
|
| 11 |
+
# --- Ajustes de entorno / telemetría (antes de importar Chroma) ---
|
| 12 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 13 |
+
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
| 14 |
+
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 15 |
+
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 16 |
+
# Silenciar telemetría de Chroma para evitar warnings/tracebacks ruidosos
|
| 17 |
+
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
|
| 18 |
+
|
| 19 |
import gradio as gr
|
| 20 |
import tensorflow as tf
|
| 21 |
from tensorflow import keras
|
|
|
|
| 26 |
from fake_useragent import UserAgent
|
| 27 |
user_agent = UserAgent().random
|
| 28 |
except Exception:
|
| 29 |
+
user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
|
|
|
|
| 30 |
header_template = {"User-Agent": user_agent}
|
| 31 |
|
| 32 |
+
# --- LangChain v0.2/0.3 family ---
|
|
|
|
| 33 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 34 |
from langchain_core.prompts import ChatPromptTemplate
|
| 35 |
from langchain_core.output_parsers import PydanticOutputParser
|
|
|
|
| 38 |
from langchain_community.document_loaders import WebBaseLoader
|
| 39 |
from langchain_community.vectorstores import Chroma
|
| 40 |
|
| 41 |
+
# Embeddings (prefer langchain-huggingface si está instal., si no community)
|
| 42 |
try:
|
| 43 |
from langchain_huggingface import HuggingFaceEmbeddings # pip install -U langchain-huggingface
|
| 44 |
except ImportError:
|
| 45 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 46 |
|
| 47 |
+
# Context compression / retrievers
|
| 48 |
from langchain.retrievers import ContextualCompressionRetriever
|
| 49 |
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
| 50 |
|
| 51 |
+
# --- Retrievers avanzados / reranker ---
|
| 52 |
+
from langchain_community.retrievers import BM25Retriever, EnsembleRetriever
|
| 53 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 54 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 55 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 56 |
|
| 57 |
+
from pydantic import BaseModel, Field # Pydantic v2
|
| 58 |
+
|
| 59 |
+
# HF Hub para descargar el SavedModel de imagen
|
| 60 |
from huggingface_hub import snapshot_download
|
| 61 |
|
| 62 |
+
# === LLM endpoint moderno (langchain-huggingface) ===
|
| 63 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 64 |
|
| 65 |
# Theming + URL list
|
| 66 |
import theme
|
| 67 |
from url_list import URLS
|
|
|
|
| 68 |
theme = theme.Theme()
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# =========================================================
|
| 71 |
# 1) IMAGE CLASSIFICATION — Keras 3-safe SavedModel loading
|
| 72 |
# =========================================================
|
|
|
|
| 80 |
class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
| 81 |
|
| 82 |
def predict_image(input_image: Image.Image):
|
| 83 |
+
"""Preprocesa a EfficientNetB0 (224x224) y ejecuta inferencia."""
|
| 84 |
img = input_image.convert("RGB").resize((224, 224))
|
| 85 |
x = tf.keras.preprocessing.image.img_to_array(img)
|
| 86 |
x = tf.keras.applications.efficientnet.preprocess_input(x)
|
|
|
|
| 104 |
theme=theme,
|
| 105 |
)
|
| 106 |
|
|
|
|
| 107 |
# ============================================
|
| 108 |
# 2) KNOWLEDGE LOADING (RAG: loader + splitter)
|
| 109 |
# ============================================
|
|
|
|
| 125 |
|
| 126 |
all_loaded_docs = safe_load_all_urls(URLS)
|
| 127 |
|
| 128 |
+
# Chunks algo más largos (mejor para reranker)
|
| 129 |
base_splitter = RecursiveCharacterTextSplitter(
|
| 130 |
+
chunk_size=900,
|
| 131 |
+
chunk_overlap=100,
|
| 132 |
length_function=len,
|
| 133 |
)
|
| 134 |
docs = base_splitter.split_documents(all_loaded_docs)
|
| 135 |
|
| 136 |
+
# Embeddings MEJORADOS (recuperación)
|
| 137 |
+
embeddings = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2")
|
| 138 |
|
| 139 |
# Vector store
|
| 140 |
persist_directory = "docs/chroma/"
|
| 141 |
shutil.rmtree(persist_directory, ignore_errors=True)
|
|
|
|
| 142 |
vectordb = Chroma.from_documents(
|
| 143 |
documents=docs,
|
| 144 |
embedding=embeddings,
|
| 145 |
persist_directory=persist_directory,
|
| 146 |
)
|
| 147 |
|
| 148 |
+
# Base retriever (vectorial)
|
| 149 |
+
vec_retriever = vectordb.as_retriever(search_kwargs={"k": 8}, search_type="mmr")
|
| 150 |
+
|
| 151 |
+
# BM25 + Ensemble (híbrido)
|
| 152 |
+
bm25 = BM25Retriever.from_documents(docs)
|
| 153 |
+
bm25.k = 8
|
| 154 |
+
hybrid_retriever = EnsembleRetriever(retrievers=[bm25, vec_retriever], weights=[0.4, 0.6])
|
| 155 |
+
|
| 156 |
+
# --- Multi-Query (paráfrasis de la consulta) ---
|
| 157 |
+
# Se apoya en el propio LLM para generar variantes y subir recall
|
| 158 |
+
# (lo definimos después de crear el LLM, ver sección 4)
|
| 159 |
|
| 160 |
+
# --- Compresión / split fino para compresor downstream ---
|
| 161 |
try:
|
| 162 |
from langchain_text_splitters import TokenTextSplitter
|
| 163 |
+
splitter_for_compression = TokenTextSplitter(chunk_size=220, chunk_overlap=30) # requiere tiktoken
|
| 164 |
except Exception:
|
| 165 |
from langchain_text_splitters import RecursiveCharacterTextSplitter as FallbackSplitter
|
| 166 |
splitter_for_compression = FallbackSplitter(chunk_size=300, chunk_overlap=50)
|
| 167 |
|
| 168 |
+
compressor_pipeline = DocumentCompressorPipeline(transformers=[splitter_for_compression])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
# ======================================
|
| 171 |
# 3) PROMPT & Pydantic schema parsing
|
|
|
|
| 177 |
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
| 178 |
|
| 179 |
SYSTEM_TEMPLATE = (
|
| 180 |
+
"Eres Greta, una asistente bilingüe (ES/EN) experta en reciclaje y sostenibilidad. "
|
| 181 |
+
"Responde de forma directa, útil y en el idioma del usuario. "
|
| 182 |
+
"Si la respuesta no aparece en los fragmentos, dilo explícitamente y ofrece pasos prácticos. "
|
| 183 |
+
"No inventes datos.\n\n"
|
| 184 |
+
"Fragmentos:\n{context}\n\n"
|
| 185 |
+
"Pregunta: {question}\n"
|
| 186 |
"{format_instructions}"
|
| 187 |
)
|
| 188 |
|
| 189 |
+
qa_prompt = ChatPromptTemplate.from_template(SYSTEM_TEMPLATE).partial(
|
| 190 |
+
format_instructions=parser.get_format_instructions()
|
|
|
|
| 191 |
)
|
| 192 |
|
| 193 |
+
# ===========================================
|
| 194 |
+
# 4) LLM — Hugging Face Inference (Llama 3.1 8B)
|
| 195 |
+
# ===========================================
|
| 196 |
endpoint = HuggingFaceEndpoint(
|
| 197 |
repo_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 198 |
+
task="text-generation", # estable para chat via HF Inference
|
| 199 |
+
max_new_tokens=900,
|
| 200 |
+
temperature=0.2,
|
| 201 |
+
top_k=40,
|
| 202 |
+
repetition_penalty=1.05,
|
| 203 |
return_full_text=False,
|
| 204 |
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
|
| 205 |
timeout=120,
|
| 206 |
model_kwargs={},
|
| 207 |
)
|
| 208 |
|
| 209 |
+
# OJO: usar llm= (no client=)
|
| 210 |
llm = ChatHuggingFace(llm=endpoint)
|
| 211 |
|
| 212 |
# ===========================================
|
| 213 |
+
# 5) Chain (memory + RAG mejorado + robust JSON)
|
| 214 |
# ===========================================
|
| 215 |
+
|
| 216 |
+
# Memoria (aviso deprec., pero funcional en LC 0.3)
|
| 217 |
memory = ConversationBufferMemory(
|
| 218 |
memory_key="chat_history",
|
| 219 |
return_messages=True,
|
| 220 |
)
|
| 221 |
|
| 222 |
+
# Multi-Query sobre el retriever híbrido
|
| 223 |
+
mqr = MultiQueryRetriever.from_llm(retriever=hybrid_retriever, llm=llm, include_original=True)
|
| 224 |
+
|
| 225 |
+
# Reranker más ligero (reduce coste latencia)
|
| 226 |
+
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 227 |
+
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)
|
| 228 |
+
|
| 229 |
+
# Compresor contextual (híbrido + multi-query → rerank → compresión fina)
|
| 230 |
+
compression_retriever = ContextualCompressionRetriever(
|
| 231 |
+
base_retriever=mqr,
|
| 232 |
+
base_compressor=reranker,
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 236 |
llm=llm,
|
| 237 |
retriever=compression_retriever,
|
|
|
|
| 270 |
f"Detalle técnico: {e}"
|
| 271 |
)
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
# ============================
|
| 274 |
# 6) Banner / Welcome content
|
| 275 |
# ============================
|
|
|
|
| 296 |
"""
|
| 297 |
banner_tab = gr.Markdown(banner_tab_content)
|
| 298 |
|
|
|
|
| 299 |
# ============================
|
| 300 |
# 7) Gradio app (tabs + run)
|
| 301 |
# ============================
|
| 302 |
+
|
| 303 |
+
# CSS simple para “ampliar visualmente” el área del chat sin usar height=
|
| 304 |
+
custom_css = """
|
| 305 |
+
/* Aumenta altura mínima del contenedor de mensajes del chatbot */
|
| 306 |
+
.gr-chatbot { min-height: 520px !important; }
|
| 307 |
+
.gr-chatbot > div { min-height: 520px !important; }
|
| 308 |
+
/* Un poco más de ancho general */
|
| 309 |
+
.gradio-container { max-width: 1200px !important; }
|
| 310 |
+
"""
|
| 311 |
+
|
| 312 |
+
chatbot_gradio_app = gr.ChatInterface(
|
| 313 |
+
fn=chat_interface,
|
| 314 |
+
title="<span style='color: rgb(243, 239, 224);'>Green Greta</span>",
|
| 315 |
+
theme=theme,
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
app = gr.TabbedInterface(
|
| 319 |
[banner_tab, image_gradio_app, chatbot_gradio_app],
|
| 320 |
tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
|
| 321 |
theme=theme,
|
| 322 |
+
css=custom_css, # aplica CSS globalmente a las pestañas
|
| 323 |
)
|
| 324 |
|
| 325 |
app.queue()
|