""" ========================================================= app.py — Green Greta (Gradio + TF/Keras 3 + LangChain 0.3) - Chat tab: Blocks + Chatbot(height=...) ✅ - LLM: meta-llama/Meta-Llama-3.1-8B-Instruct ✅ - RAG: e5-base-v2 + (BM25+Vector) con fallback + Multi-Query + reranker ✅ - Responde en el idioma elegido (sin pasar claves extra) ✅ ========================================================= """ import os import json import shutil # --- Env / telemetry (antes de imports que lo usen) --- os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1") os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False") os.environ.setdefault("ANONYMIZED_TELEMETRY", "false") os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE") os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)") # Opcional: resultados CPU más estables de TF # os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0") import gradio as gr import tensorflow as tf from tensorflow import keras from PIL import Image import tenacity try: from fake_useragent import UserAgent user_agent = UserAgent().random except Exception: user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36" header_template = {"User-Agent": user_agent} # --- LangChain / RAG --- from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_core.prompts import ChatPromptTemplate from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain_community.document_loaders import WebBaseLoader from langchain_community.vectorstores import Chroma # Embeddings try: from langchain_huggingface import HuggingFaceEmbeddings except ImportError: from langchain_community.embeddings import HuggingFaceEmbeddings # Retrieval utilities from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever from langchain.retrievers.multi_query import MultiQueryRetriever from langchain.retrievers.document_compressors import CrossEncoderReranker from langchain_community.retrievers import BM25Retriever from langchain_community.cross_encoders import HuggingFaceCrossEncoder # HF Hub from huggingface_hub import snapshot_download # LLM via HF Inference from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint # Theming + URL list import theme from url_list import URLS theme = theme.Theme() # ========================================================= # 1) IMAGE CLASSIFICATION — Keras 3-safe SavedModel loading # ========================================================= MODEL_REPO = "rocioadlc/efficientnetB0_trash" MODEL_SERVING_SIGNATURE = "serving_default" model_dir = snapshot_download(MODEL_REPO) image_model = keras.layers.TFSMLayer(model_dir, call_endpoint=MODEL_SERVING_SIGNATURE) class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"] def predict_image(input_image: Image.Image): img = input_image.convert("RGB").resize((224, 224)) x = tf.keras.preprocessing.image.img_to_array(img) x = tf.keras.applications.efficientnet.preprocess_input(x) x = tf.expand_dims(x, 0) outputs = image_model(x) preds = outputs[next(iter(outputs))] if isinstance(outputs, dict) and outputs else outputs arr = preds.numpy() if hasattr(preds, "numpy") else preds probs = arr[0].tolist() return {label: float(probs[i]) for i, label in enumerate(class_labels)} image_gradio_app = gr.Interface( fn=predict_image, inputs=gr.Image(label="Image", sources=["upload", "webcam"], type="pil"), outputs=[gr.Label(label="Result")], title="Green Greta", theme=theme, ) # ============================================ # 2) KNOWLEDGE LOADING (RAG: loader + splitter) # ============================================ @tenacity.retry(wait=tenacity.wait_fixed(3), stop=tenacity.stop_after_attempt(3), reraise=True) def load_url(url: str): loader = WebBaseLoader(web_paths=[url], header_template=header_template) return loader.load() def safe_load_all_urls(urls): all_docs = [] for link in urls: try: docs = load_url(link) all_docs.extend(docs) except Exception as e: print(f"Skipping URL due to error: {link}\nError: {e}\n") return all_docs all_loaded_docs = safe_load_all_urls(URLS) base_splitter = RecursiveCharacterTextSplitter( chunk_size=900, chunk_overlap=100, length_function=len, ) docs = base_splitter.split_documents(all_loaded_docs) # Embeddings embeddings = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2") # Vector store persist_directory = "docs/chroma/" shutil.rmtree(persist_directory, ignore_errors=True) vectordb = Chroma.from_documents( documents=docs, embedding=embeddings, persist_directory=persist_directory, ) # Vector retriever vec_retriever = vectordb.as_retriever(search_kwargs={"k": 8}, search_type="mmr") # BM25 + Ensemble con fallback si falta rank-bm25 use_bm25 = True try: bm25 = BM25Retriever.from_documents(docs) # requiere rank-bm25 bm25.k = 8 except Exception as e: print(f"[RAG] BM25 unavailable ({e}). Falling back to vector-only retriever.") use_bm25 = False bm25 = None if use_bm25: base_retriever = EnsembleRetriever(retrievers=[bm25, vec_retriever], weights=[0.4, 0.6]) else: base_retriever = vec_retriever # ====================================== # 3) PROMPT (sin variables extra: solo {context} y {question}) # Instruimos al modelo a obedecer un prefijo en la propia pregunta. # ====================================== SYSTEM_TEMPLATE = ( "You are Greta, a recycling & sustainability assistant. " "Follow any explicit language directive at the start of the question, e.g., " "‘Answer ONLY in Spanish.’ If there is no directive, detect the user's language and answer accordingly. " "Be direct and practical. If the snippets are insufficient, say so and suggest actionable next steps.\n\n" "{context}\n\n" "Question: {question}" ) qa_prompt = ChatPromptTemplate.from_template(SYSTEM_TEMPLATE) # =========================================== # 4) LLM — Hugging Face Inference (Llama 3.1 8B) # =========================================== endpoint = HuggingFaceEndpoint( repo_id="meta-llama/Meta-Llama-3.1-8B-Instruct", task="text-generation", max_new_tokens=900, temperature=0.2, top_k=40, repetition_penalty=1.05, return_full_text=False, huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), timeout=120, model_kwargs={}, ) llm = ChatHuggingFace(llm=endpoint) # =========================================== # 5) Chain (memory + Multi-Query + reranker + compression) # =========================================== memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True, ) # Multi-Query (paráfrasis de la consulta) mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True) # Reranker (cross-encoder base) cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") reranker = CrossEncoderReranker(model=cross_encoder, top_n=4) compression_retriever = ContextualCompressionRetriever( base_retriever=mqr, base_compressor=reranker, ) qa_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=compression_retriever, memory=memory, verbose=True, combine_docs_chain_kwargs={"prompt": qa_prompt}, get_chat_history=lambda h: h, rephrase_question=False, return_source_documents=False, ) # ===== Helper: construir prefijo de idioma en la propia pregunta ===== def _lang_directive(lang: str) -> str: if not lang or lang.strip().lower() == "auto": return "Detect the user's language and answer in that language." return f"Answer ONLY in {lang}." def chat_interface(question: str, history, target_language: str = "Auto"): """Devuelve respuesta limpia en el idioma solicitado, SIN pasar claves extra al chain.""" try: directive = _lang_directive(target_language) combined_q = f"{directive}\n\n{question}" result = qa_chain.invoke({"question": combined_q}) answer = result.get("answer", "") if not answer: return "Lo siento, no pude generar una respuesta útil con la información disponible." return answer except Exception as e: return ( "Lo siento, tuve un problema procesando tu pregunta. " "Intenta de nuevo en un momento o formula la consulta de otra manera.\n\n" f"Detalle técnico: {e}" ) # ============================ # 6) Banner / Welcome content # ============================ banner_tab_content = """
¿Alguna vez te has preguntado si puedes reciclar un objeto en particular? ¿O te has sentido abrumado por la cantidad de residuos que generas y no sabes cómo manejarlos de manera más sostenible? ¡Estás en el lugar correcto!
Nuestra plataforma combina la potencia de la inteligencia artificial con la comodidad de un chatbot para brindarte respuestas rápidas y precisas sobre qué objetos son reciclables y cómo hacerlo de la manera más eficiente.
¿Cómo usarlo?
Have you ever wondered if you can recycle a particular object? Or felt overwhelmed by the amount of waste you generate and don't know how to handle it more sustainably? You're in the right place!
Our platform combines the power of artificial intelligence with the convenience of a chatbot to provide you with quick and accurate answers about which objects are recyclable and how to do it most efficiently.
How to use it?