Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| import random | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| AutoencoderKL, | |
| StableDiffusionControlNetPipeline, | |
| ControlNetModel, | |
| StableDiffusionLatentUpscalePipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| DPMSolverMultistepScheduler, | |
| EulerDiscreteScheduler | |
| ) | |
| import tempfile | |
| import time | |
| import os | |
| from transformers import CLIPImageProcessor | |
| BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
| # Initialize both pipelines | |
| vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
| controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16) | |
| # Initialize the safety checker conditionally | |
| SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1" | |
| safety_checker = None | |
| feature_extractor = None | |
| if SAFETY_CHECKER_ENABLED: | |
| safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda") | |
| feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| BASE_MODEL, | |
| controlnet=controlnet, | |
| vae=vae, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| torch_dtype=torch.float16, | |
| ).to("cuda") | |
| # Sampler map | |
| SAMPLER_MAP = { | |
| "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
| "Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
| } | |
| def center_crop_resize(img, output_size=(512, 512)): | |
| width, height = img.size | |
| new_dimension = min(width, height) | |
| left = (width - new_dimension) / 2 | |
| top = (height - new_dimension) / 2 | |
| right = (width + new_dimension) / 2 | |
| bottom = (height + new_dimension) / 2 | |
| img = img.crop((left, top, right, bottom)) | |
| img = img.resize(output_size) | |
| return img | |
| def common_upscale(samples, width, height, upscale_method, crop=False): | |
| if crop == "center": | |
| old_width = samples.shape[3] | |
| old_height = samples.shape[2] | |
| old_aspect = old_width / old_height | |
| new_aspect = width / height | |
| x = 0 | |
| y = 0 | |
| if old_aspect > new_aspect: | |
| x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) | |
| elif old_aspect < new_aspect: | |
| y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) | |
| s = samples[:, :, y:old_height - y, x:old_width - x] | |
| else: | |
| s = samples | |
| return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |
| def upscale(samples, upscale_method, scale_by): | |
| width = round(samples["images"].shape[3] * scale_by) | |
| height = round(samples["images"].shape[2] * scale_by) | |
| s = common_upscale(samples["images"], width, height, upscale_method, "disabled") | |
| return s | |
| def check_inputs(prompt: str, control_image: Image.Image): | |
| if control_image is None: | |
| raise gr.Error("Please select or upload an Input Illusion") | |
| if prompt is None or prompt == "": | |
| raise gr.Error("Prompt is required") | |
| def inference(control_image: Image.Image, prompt: str, negative_prompt: str, | |
| guidance_scale: float = 8.0, | |
| controlnet_conditioning_scale: float = 1, | |
| control_guidance_start: float = 1, | |
| control_guidance_end: float = 1, | |
| upscaler_strength: float = 0.5, | |
| seed: int = -1, | |
| sampler="DPM++ Karras SDE", | |
| progress=gr.Progress(track_tqdm=True), | |
| profile=None): | |
| start_time = time.time() | |
| control_image_small = center_crop_resize(control_image) | |
| main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
| my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed | |
| generator = torch.Generator(device="cuda").manual_seed(my_seed) | |
| out = main_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=control_image_small, | |
| guidance_scale=float(guidance_scale), | |
| controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
| generator=generator, | |
| control_guidance_start=float(control_guidance_start), | |
| control_guidance_end=float(control_guidance_end), | |
| num_inference_steps=15, | |
| output_type="latent" | |
| ) | |
| upscaled_latents = upscale(out, "nearest-exact", 2) | |
| out_image = main_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| control_image=center_crop_resize(control_image, (1024, 1024)), | |
| image=upscaled_latents, | |
| guidance_scale=float(guidance_scale), | |
| generator=generator, | |
| num_inference_steps=20, | |
| strength=upscaler_strength, | |
| control_guidance_start=float(control_guidance_start), | |
| control_guidance_end=float(control_guidance_end), | |
| controlnet_conditioning_scale=float(controlnet_conditioning_scale) | |
| ) | |
| end_time = time.time() | |
| # Save image + metadata logic here | |
| with gr.Blocks() as app: | |
| gr.Markdown(''' | |
| <div style="text-align: center;"> | |
| <h1>Illusion Diffusion HQ π</h1> | |
| <p style="font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</p> | |
| </div> | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| control_image = gr.Image(label="Input Illusion", type="pil") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Medieval village scene with busy streets and castle in the distance") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality") | |
| run_btn = gr.Button("Run") | |
| result_image = gr.Image(label="Illusion Diffusion Output", interactive=False) | |
| run_btn.click(check_inputs, inputs=[prompt, control_image]).success( | |
| inference, inputs=[control_image, prompt, negative_prompt], outputs=[result_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() | |