Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from diffusers import (
|
| 6 |
+
StableDiffusionPipeline,
|
| 7 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 8 |
+
ControlNetModel,
|
| 9 |
+
DDIMScheduler,
|
| 10 |
+
DPMSolverMultistepScheduler,
|
| 11 |
+
DEISMultistepScheduler,
|
| 12 |
+
HeunDiscreteScheduler,
|
| 13 |
+
EulerDiscreteScheduler,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Initialize ControlNet model
|
| 17 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 18 |
+
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Initialize pipeline
|
| 22 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 23 |
+
"XpucT/Deliberate",
|
| 24 |
+
controlnet=controlnet,
|
| 25 |
+
safety_checker=None,
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
).to("cuda")
|
| 28 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 29 |
+
|
| 30 |
+
# Sampler configurations
|
| 31 |
+
SAMPLER_MAP = {
|
| 32 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 33 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# Inference function
|
| 37 |
+
def inference(
|
| 38 |
+
input_image: Image.Image,
|
| 39 |
+
prompt: str,
|
| 40 |
+
negative_prompt: str,
|
| 41 |
+
guidance_scale: float = 10.0,
|
| 42 |
+
controlnet_conditioning_scale: float = 1.0,
|
| 43 |
+
strength: float = 0.8,
|
| 44 |
+
seed: int = -1,
|
| 45 |
+
sampler = "DPM++ Karras SDE",
|
| 46 |
+
):
|
| 47 |
+
if prompt is None or prompt == "":
|
| 48 |
+
raise gr.Error("Prompt is required")
|
| 49 |
+
|
| 50 |
+
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
| 51 |
+
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 52 |
+
|
| 53 |
+
out = pipe(
|
| 54 |
+
prompt=prompt,
|
| 55 |
+
negative_prompt=negative_prompt,
|
| 56 |
+
image=input_image,
|
| 57 |
+
control_image=input_image, # type: ignore
|
| 58 |
+
width=512, # type: ignore
|
| 59 |
+
height=512, # type: ignore
|
| 60 |
+
guidance_scale=float(guidance_scale),
|
| 61 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
|
| 62 |
+
generator=generator,
|
| 63 |
+
strength=float(strength),
|
| 64 |
+
num_inference_steps=40,
|
| 65 |
+
)
|
| 66 |
+
return out.images[0] # type: ignore
|
| 67 |
+
|
| 68 |
+
# Gradio UI
|
| 69 |
+
with gr.Blocks() as app:
|
| 70 |
+
gr.Markdown(
|
| 71 |
+
'''
|
| 72 |
+
# Illusion Diffusion
|
| 73 |
+
## A simple UI for generating beatiful illusion art with Stable Diffusion 1.5
|
| 74 |
+
'''
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
with gr.Row():
|
| 78 |
+
with gr.Column():
|
| 79 |
+
input_image = gr.Image(label="Input Illusion", type="pil")
|
| 80 |
+
prompt = gr.Textbox(label="Prompt", info="Prompt that guides the generation towards")
|
| 81 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
| 82 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
| 83 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
|
| 84 |
+
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
| 85 |
+
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
| 86 |
+
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
|
| 87 |
+
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
| 88 |
+
run_btn = gr.Button("Run")
|
| 89 |
+
with gr.Column():
|
| 90 |
+
result_image = gr.Image(label="Illusion Diffusion Output")
|
| 91 |
+
|
| 92 |
+
run_btn.click(
|
| 93 |
+
inference,
|
| 94 |
+
inputs=[input_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
|
| 95 |
+
outputs=[result_image]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
app.queue(concurrency_count=4, max_size=20)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
app.launch(debug=True)
|