Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
7391723
1
Parent(s):
c1f6c62
Improve mem usage (#70)
Browse files- Improve mem usage (2b0be71ae4a84219bf76feddb29e3a339d2ad2f9)
- improve (dcab47337e68e8397244156ea1f8216685eef465)
- improve (f7bc5db379dbda268146e36d32388273bdd603ca)
- improve (cf27adf590f95fe663b87c0e7df23f535a3d9b68)
- improve (fb9b203ded8b0e9018fc1566ea3dca01e4273b31)
- improve (69cc446845536f34f18ba354dd8515b3ce28b8a9)
- improve (70b9430b16cb8d20a76feb590f8920dcdf2ff938)
- make style (679bb8131dff16a0d5d957af456a886ea1ec1e18)
Co-authored-by: Patrick von Platen <patrickvonplaten@users.noreply.huggingface.co>
- app.py +7 -5
- requirements.txt +4 -2
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import torch
|
| 2 |
-
import os
|
| 3 |
import gradio as gr
|
| 4 |
from PIL import Image
|
| 5 |
import random
|
|
@@ -31,11 +30,13 @@ main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
| 31 |
safety_checker=None,
|
| 32 |
torch_dtype=torch.float16,
|
| 33 |
).to("cuda")
|
|
|
|
| 34 |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 35 |
#main_pipe.unet.to(memory_format=torch.channels_last)
|
| 36 |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 37 |
#model_id = "stabilityai/sd-x2-latent-upscaler"
|
| 38 |
-
image_pipe = StableDiffusionControlNetImg2ImgPipeline
|
|
|
|
| 39 |
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 40 |
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 41 |
#upscaler.to("cuda")
|
|
@@ -110,9 +111,11 @@ def inference(
|
|
| 110 |
|
| 111 |
# Rest of your existing code
|
| 112 |
control_image_small = center_crop_resize(control_image)
|
|
|
|
|
|
|
| 113 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 114 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
| 115 |
-
generator = torch.manual_seed(my_seed)
|
| 116 |
|
| 117 |
out = main_pipe(
|
| 118 |
prompt=prompt,
|
|
@@ -126,7 +129,6 @@ def inference(
|
|
| 126 |
num_inference_steps=15,
|
| 127 |
output_type="latent"
|
| 128 |
)
|
| 129 |
-
control_image_large = center_crop_resize(control_image, (1024, 1024))
|
| 130 |
upscaled_latents = upscale(out, "nearest-exact", 2)
|
| 131 |
out_image = image_pipe(
|
| 132 |
prompt=prompt,
|
|
@@ -201,4 +203,4 @@ with gr.Blocks(css=css) as app:
|
|
| 201 |
app.queue(max_size=20)
|
| 202 |
|
| 203 |
if __name__ == "__main__":
|
| 204 |
-
app.launch()
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
import random
|
|
|
|
| 30 |
safety_checker=None,
|
| 31 |
torch_dtype=torch.float16,
|
| 32 |
).to("cuda")
|
| 33 |
+
|
| 34 |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 35 |
#main_pipe.unet.to(memory_format=torch.channels_last)
|
| 36 |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 37 |
#model_id = "stabilityai/sd-x2-latent-upscaler"
|
| 38 |
+
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
| 39 |
+
|
| 40 |
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 41 |
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 42 |
#upscaler.to("cuda")
|
|
|
|
| 111 |
|
| 112 |
# Rest of your existing code
|
| 113 |
control_image_small = center_crop_resize(control_image)
|
| 114 |
+
control_image_large = center_crop_resize(control_image, (1024, 1024))
|
| 115 |
+
|
| 116 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 117 |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
| 118 |
+
generator = torch.Generator(device="cuda").manual_seed(my_seed)
|
| 119 |
|
| 120 |
out = main_pipe(
|
| 121 |
prompt=prompt,
|
|
|
|
| 129 |
num_inference_steps=15,
|
| 130 |
output_type="latent"
|
| 131 |
)
|
|
|
|
| 132 |
upscaled_latents = upscale(out, "nearest-exact", 2)
|
| 133 |
out_image = image_pipe(
|
| 134 |
prompt=prompt,
|
|
|
|
| 203 |
app.queue(max_size=20)
|
| 204 |
|
| 205 |
if __name__ == "__main__":
|
| 206 |
+
app.launch()
|
requirements.txt
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
diffusers
|
| 2 |
transformers
|
| 3 |
accelerate
|
| 4 |
-
torch
|
| 5 |
xformers
|
| 6 |
gradio
|
| 7 |
Pillow
|
| 8 |
qrcode
|
| 9 |
-
filelock
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
diffusers
|
| 2 |
transformers
|
| 3 |
accelerate
|
|
|
|
| 4 |
xformers
|
| 5 |
gradio
|
| 6 |
Pillow
|
| 7 |
qrcode
|
| 8 |
+
filelock
|
| 9 |
+
|
| 10 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 11 |
+
torch
|