Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler | |
| from huggingface_hub import hf_hub_download | |
| from PIL import Image | |
| import io | |
| import spaces | |
| def generate_image(prompt): | |
| base = "stabilityai/stable-diffusion-xl-base-1.0" | |
| repo = "ByteDance/SDXL-Lightning" | |
| ckpt = "sdxl_lightning_4step_unet.pth" | |
| # Load model | |
| pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
| pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, ckpt), map_location="cuda")) | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
| # Generate image | |
| image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0] | |
| return image | |
| #gradio | |
| description = """ | |
| This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps. | |
| As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning | |
| """ | |
| demo = gr.Interface( | |
| fn=generate_image, | |
| inputs="text", | |
| outputs="image", | |
| title="Text-to-Image with SDXL Lightning ⚡", | |
| description=description | |
| ) | |
| demo.queue(max_size=20) | |
| demo.launch() |