Spaces:
Runtime error
Runtime error
Fix bug and improve speed (#9)
Browse files- Fix bug and improve speed (e935aa8c5c1140dc2dc9b5da60cfa5ef7ba64d71)
Co-authored-by: Peter Lin <PeterL1n@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -18,6 +18,7 @@ checkpoints = {
|
|
| 18 |
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
| 19 |
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
| 20 |
}
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
|
@@ -49,18 +50,17 @@ if SAFETY_CHECKER:
|
|
| 49 |
# Function
|
| 50 |
@spaces.GPU(enable_queue=True)
|
| 51 |
def generate_image(prompt, ckpt):
|
|
|
|
|
|
|
| 52 |
|
| 53 |
checkpoint = checkpoints[ckpt][0]
|
| 54 |
-
num_inference_steps = checkpoints[ckpt][1]
|
| 55 |
-
|
| 56 |
-
if num_inference_steps
|
| 57 |
-
|
| 58 |
-
pipe.
|
| 59 |
-
|
| 60 |
-
# Ensure sampler uses "trailing" timesteps.
|
| 61 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 62 |
|
| 63 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
| 64 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 65 |
|
| 66 |
if SAFETY_CHECKER:
|
|
@@ -84,7 +84,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 84 |
gr.Markdown(description)
|
| 85 |
with gr.Group():
|
| 86 |
with gr.Row():
|
| 87 |
-
prompt = gr.Textbox(label='Enter
|
| 88 |
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
| 89 |
submit = gr.Button(scale=1, variant='primary')
|
| 90 |
img = gr.Image(label='SDXL-Lightning Generated Image')
|
|
|
|
| 18 |
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
| 19 |
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
| 20 |
}
|
| 21 |
+
loaded = None
|
| 22 |
|
| 23 |
|
| 24 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
|
|
|
| 50 |
# Function
|
| 51 |
@spaces.GPU(enable_queue=True)
|
| 52 |
def generate_image(prompt, ckpt):
|
| 53 |
+
global loaded
|
| 54 |
+
print(prompt, ckpt)
|
| 55 |
|
| 56 |
checkpoint = checkpoints[ckpt][0]
|
| 57 |
+
num_inference_steps = checkpoints[ckpt][1]
|
| 58 |
+
|
| 59 |
+
if loaded != num_inference_steps:
|
| 60 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
| 61 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
| 62 |
+
loaded = num_inference_steps
|
|
|
|
|
|
|
| 63 |
|
|
|
|
| 64 |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 65 |
|
| 66 |
if SAFETY_CHECKER:
|
|
|
|
| 84 |
gr.Markdown(description)
|
| 85 |
with gr.Group():
|
| 86 |
with gr.Row():
|
| 87 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
| 88 |
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
| 89 |
submit = gr.Button(scale=1, variant='primary')
|
| 90 |
img = gr.Image(label='SDXL-Lightning Generated Image')
|