Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import annotations | |
| import abc | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from packaging import version | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel | |
| from diffusers.configuration_utils import FrozenDict, deprecate | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| LoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models.attention import Attention | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
| StableDiffusionSafetyChecker, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| logging, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| class Prompt2PromptPipeline( | |
| DiffusionPipeline, | |
| TextualInversionLoaderMixin, | |
| LoraLoaderMixin, | |
| IPAdapterMixin, | |
| FromSingleFileMixin, | |
| ): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| **kwargs, | |
| ): | |
| deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
| deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
| prompt_embeds_tuple = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| **kwargs, | |
| ) | |
| # concatenate for backwards comp | |
| prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| lora_scale (`float`, *optional*): | |
| A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: process multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| output_hidden_states=True, | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: process multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ip_adapter_image=None, | |
| ip_adapter_image_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
| raise ValueError( | |
| "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| The keyword arguments to configure the edit are: | |
| - edit_type (`str`). The edit type to apply. Can be either of `replace`, `refine`, `reweight`. | |
| - n_cross_replace (`int`): Number of diffusion steps in which cross attention should be replaced | |
| - n_self_replace (`int`): Number of diffusion steps in which self attention should be replaced | |
| - local_blend_words(`List[str]`, *optional*, default to `None`): Determines which area should be | |
| changed. If None, then the whole image can be changed. | |
| - equalizer_words(`List[str]`, *optional*, default to `None`): Required for edit type `reweight`. | |
| Determines which words should be enhanced. | |
| - equalizer_strengths (`List[float]`, *optional*, default to `None`) Required for edit type `reweight`. | |
| Determines which how much the words in `equalizer_words` should be enhanced. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
| using zero terminal SNR. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| self.controller = create_controller( | |
| prompt, | |
| cross_attention_kwargs, | |
| num_inference_steps, | |
| tokenizer=self.tokenizer, | |
| device=self.device, | |
| ) | |
| self.register_attention_control(self.controller) # add attention controller | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # step callback | |
| latents = self.controller.step_callback(latents) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # 8. Post-processing | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| # 9. Run safety checker | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def register_attention_control(self, controller): | |
| attn_procs = {} | |
| cross_att_count = 0 | |
| for name in self.unet.attn_processors.keys(): | |
| (None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim) | |
| if name.startswith("mid_block"): | |
| self.unet.config.block_out_channels[-1] | |
| place_in_unet = "mid" | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| list(reversed(self.unet.config.block_out_channels))[block_id] | |
| place_in_unet = "up" | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| self.unet.config.block_out_channels[block_id] | |
| place_in_unet = "down" | |
| else: | |
| continue | |
| cross_att_count += 1 | |
| attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet) | |
| self.unet.set_attn_processor(attn_procs) | |
| controller.num_att_layers = cross_att_count | |
| class P2PCrossAttnProcessor: | |
| def __init__(self, controller, place_in_unet): | |
| super().__init__() | |
| self.controller = controller | |
| self.place_in_unet = place_in_unet | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| ): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| query = attn.to_q(hidden_states) | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| # one line change | |
| self.controller(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| def create_controller( | |
| prompts: List[str], | |
| cross_attention_kwargs: Dict, | |
| num_inference_steps: int, | |
| tokenizer, | |
| device, | |
| ) -> AttentionControl: | |
| edit_type = cross_attention_kwargs.get("edit_type", None) | |
| local_blend_words = cross_attention_kwargs.get("local_blend_words", None) | |
| equalizer_words = cross_attention_kwargs.get("equalizer_words", None) | |
| equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None) | |
| n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4) | |
| n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4) | |
| # only replace | |
| if edit_type == "replace" and local_blend_words is None: | |
| return AttentionReplace( | |
| prompts, | |
| num_inference_steps, | |
| n_cross_replace, | |
| n_self_replace, | |
| tokenizer=tokenizer, | |
| device=device, | |
| ) | |
| # replace + localblend | |
| if edit_type == "replace" and local_blend_words is not None: | |
| lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device) | |
| return AttentionReplace( | |
| prompts, | |
| num_inference_steps, | |
| n_cross_replace, | |
| n_self_replace, | |
| lb, | |
| tokenizer=tokenizer, | |
| device=device, | |
| ) | |
| # only refine | |
| if edit_type == "refine" and local_blend_words is None: | |
| return AttentionRefine( | |
| prompts, | |
| num_inference_steps, | |
| n_cross_replace, | |
| n_self_replace, | |
| tokenizer=tokenizer, | |
| device=device, | |
| ) | |
| # refine + localblend | |
| if edit_type == "refine" and local_blend_words is not None: | |
| lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device) | |
| return AttentionRefine( | |
| prompts, | |
| num_inference_steps, | |
| n_cross_replace, | |
| n_self_replace, | |
| lb, | |
| tokenizer=tokenizer, | |
| device=device, | |
| ) | |
| # reweight | |
| if edit_type == "reweight": | |
| assert ( | |
| equalizer_words is not None and equalizer_strengths is not None | |
| ), "To use reweight edit, please specify equalizer_words and equalizer_strengths." | |
| assert len(equalizer_words) == len( | |
| equalizer_strengths | |
| ), "equalizer_words and equalizer_strengths must be of same length." | |
| equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer) | |
| return AttentionReweight( | |
| prompts, | |
| num_inference_steps, | |
| n_cross_replace, | |
| n_self_replace, | |
| tokenizer=tokenizer, | |
| device=device, | |
| equalizer=equalizer, | |
| ) | |
| raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.") | |
| class AttentionControl(abc.ABC): | |
| def step_callback(self, x_t): | |
| return x_t | |
| def between_steps(self): | |
| return | |
| def num_uncond_att_layers(self): | |
| return 0 | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| raise NotImplementedError | |
| def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
| if self.cur_att_layer >= self.num_uncond_att_layers: | |
| h = attn.shape[0] | |
| attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet) | |
| self.cur_att_layer += 1 | |
| if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
| self.cur_att_layer = 0 | |
| self.cur_step += 1 | |
| self.between_steps() | |
| return attn | |
| def reset(self): | |
| self.cur_step = 0 | |
| self.cur_att_layer = 0 | |
| def __init__(self): | |
| self.cur_step = 0 | |
| self.num_att_layers = -1 | |
| self.cur_att_layer = 0 | |
| class EmptyControl(AttentionControl): | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| return attn | |
| class AttentionStore(AttentionControl): | |
| def get_empty_store(): | |
| return { | |
| "down_cross": [], | |
| "mid_cross": [], | |
| "up_cross": [], | |
| "down_self": [], | |
| "mid_self": [], | |
| "up_self": [], | |
| } | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
| if attn.shape[1] <= 32**2: # avoid memory overhead | |
| self.step_store[key].append(attn) | |
| return attn | |
| def between_steps(self): | |
| if len(self.attention_store) == 0: | |
| self.attention_store = self.step_store | |
| else: | |
| for key in self.attention_store: | |
| for i in range(len(self.attention_store[key])): | |
| self.attention_store[key][i] += self.step_store[key][i] | |
| self.step_store = self.get_empty_store() | |
| def get_average_attention(self): | |
| average_attention = { | |
| key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store | |
| } | |
| return average_attention | |
| def reset(self): | |
| super(AttentionStore, self).reset() | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| def __init__(self): | |
| super(AttentionStore, self).__init__() | |
| self.step_store = self.get_empty_store() | |
| self.attention_store = {} | |
| class LocalBlend: | |
| def __call__(self, x_t, attention_store): | |
| k = 1 | |
| maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
| maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps] | |
| maps = torch.cat(maps, dim=1) | |
| maps = (maps * self.alpha_layers).sum(-1).mean(1) | |
| mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k)) | |
| mask = F.interpolate(mask, size=(x_t.shape[2:])) | |
| mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
| mask = mask.gt(self.threshold) | |
| mask = (mask[:1] + mask[1:]).float() | |
| x_t = x_t[:1] + mask * (x_t - x_t[:1]) | |
| return x_t | |
| def __init__( | |
| self, | |
| prompts: List[str], | |
| words: [List[List[str]]], | |
| tokenizer, | |
| device, | |
| threshold=0.3, | |
| max_num_words=77, | |
| ): | |
| self.max_num_words = 77 | |
| alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words) | |
| for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
| if isinstance(words_, str): | |
| words_ = [words_] | |
| for word in words_: | |
| ind = get_word_inds(prompt, word, tokenizer) | |
| alpha_layers[i, :, :, :, :, ind] = 1 | |
| self.alpha_layers = alpha_layers.to(device) | |
| self.threshold = threshold | |
| class AttentionControlEdit(AttentionStore, abc.ABC): | |
| def step_callback(self, x_t): | |
| if self.local_blend is not None: | |
| x_t = self.local_blend(x_t, self.attention_store) | |
| return x_t | |
| def replace_self_attention(self, attn_base, att_replace): | |
| if att_replace.shape[2] <= 16**2: | |
| return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
| else: | |
| return att_replace | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| raise NotImplementedError | |
| def forward(self, attn, is_cross: bool, place_in_unet: str): | |
| super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
| # FIXME not replace correctly | |
| if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
| h = attn.shape[0] // (self.batch_size) | |
| attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
| attn_base, attn_repalce = attn[0], attn[1:] | |
| if is_cross: | |
| alpha_words = self.cross_replace_alpha[self.cur_step] | |
| attn_repalce_new = ( | |
| self.replace_cross_attention(attn_base, attn_repalce) * alpha_words | |
| + (1 - alpha_words) * attn_repalce | |
| ) | |
| attn[1:] = attn_repalce_new | |
| else: | |
| attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | |
| attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
| return attn | |
| def __init__( | |
| self, | |
| prompts, | |
| num_steps: int, | |
| cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
| self_replace_steps: Union[float, Tuple[float, float]], | |
| local_blend: Optional[LocalBlend], | |
| tokenizer, | |
| device, | |
| ): | |
| super(AttentionControlEdit, self).__init__() | |
| # add tokenizer and device here | |
| self.tokenizer = tokenizer | |
| self.device = device | |
| self.batch_size = len(prompts) | |
| self.cross_replace_alpha = get_time_words_attention_alpha( | |
| prompts, num_steps, cross_replace_steps, self.tokenizer | |
| ).to(self.device) | |
| if isinstance(self_replace_steps, float): | |
| self_replace_steps = 0, self_replace_steps | |
| self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
| self.local_blend = local_blend # 在外面定义后传进来 | |
| class AttentionReplace(AttentionControlEdit): | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper) | |
| def __init__( | |
| self, | |
| prompts, | |
| num_steps: int, | |
| cross_replace_steps: float, | |
| self_replace_steps: float, | |
| local_blend: Optional[LocalBlend] = None, | |
| tokenizer=None, | |
| device=None, | |
| ): | |
| super(AttentionReplace, self).__init__( | |
| prompts, | |
| num_steps, | |
| cross_replace_steps, | |
| self_replace_steps, | |
| local_blend, | |
| tokenizer, | |
| device, | |
| ) | |
| self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device) | |
| class AttentionRefine(AttentionControlEdit): | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
| attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
| return attn_replace | |
| def __init__( | |
| self, | |
| prompts, | |
| num_steps: int, | |
| cross_replace_steps: float, | |
| self_replace_steps: float, | |
| local_blend: Optional[LocalBlend] = None, | |
| tokenizer=None, | |
| device=None, | |
| ): | |
| super(AttentionRefine, self).__init__( | |
| prompts, | |
| num_steps, | |
| cross_replace_steps, | |
| self_replace_steps, | |
| local_blend, | |
| tokenizer, | |
| device, | |
| ) | |
| self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer) | |
| self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device) | |
| self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
| class AttentionReweight(AttentionControlEdit): | |
| def replace_cross_attention(self, attn_base, att_replace): | |
| if self.prev_controller is not None: | |
| attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
| attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
| return attn_replace | |
| def __init__( | |
| self, | |
| prompts, | |
| num_steps: int, | |
| cross_replace_steps: float, | |
| self_replace_steps: float, | |
| equalizer, | |
| local_blend: Optional[LocalBlend] = None, | |
| controller: Optional[AttentionControlEdit] = None, | |
| tokenizer=None, | |
| device=None, | |
| ): | |
| super(AttentionReweight, self).__init__( | |
| prompts, | |
| num_steps, | |
| cross_replace_steps, | |
| self_replace_steps, | |
| local_blend, | |
| tokenizer, | |
| device, | |
| ) | |
| self.equalizer = equalizer.to(self.device) | |
| self.prev_controller = controller | |
| ### util functions for all Edits | |
| def update_alpha_time_word( | |
| alpha, | |
| bounds: Union[float, Tuple[float, float]], | |
| prompt_ind: int, | |
| word_inds: Optional[torch.Tensor] = None, | |
| ): | |
| if isinstance(bounds, float): | |
| bounds = 0, bounds | |
| start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
| if word_inds is None: | |
| word_inds = torch.arange(alpha.shape[2]) | |
| alpha[:start, prompt_ind, word_inds] = 0 | |
| alpha[start:end, prompt_ind, word_inds] = 1 | |
| alpha[end:, prompt_ind, word_inds] = 0 | |
| return alpha | |
| def get_time_words_attention_alpha( | |
| prompts, | |
| num_steps, | |
| cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
| tokenizer, | |
| max_num_words=77, | |
| ): | |
| if not isinstance(cross_replace_steps, dict): | |
| cross_replace_steps = {"default_": cross_replace_steps} | |
| if "default_" not in cross_replace_steps: | |
| cross_replace_steps["default_"] = (0.0, 1.0) | |
| alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
| for i in range(len(prompts) - 1): | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i) | |
| for key, item in cross_replace_steps.items(): | |
| if key != "default_": | |
| inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
| for i, ind in enumerate(inds): | |
| if len(ind) > 0: | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
| alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
| return alpha_time_words | |
| ### util functions for LocalBlend and ReplacementEdit | |
| def get_word_inds(text: str, word_place: int, tokenizer): | |
| split_text = text.split(" ") | |
| if isinstance(word_place, str): | |
| word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
| elif isinstance(word_place, int): | |
| word_place = [word_place] | |
| out = [] | |
| if len(word_place) > 0: | |
| words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
| cur_len, ptr = 0, 0 | |
| for i in range(len(words_encode)): | |
| cur_len += len(words_encode[i]) | |
| if ptr in word_place: | |
| out.append(i + 1) | |
| if cur_len >= len(split_text[ptr]): | |
| ptr += 1 | |
| cur_len = 0 | |
| return np.array(out) | |
| ### util functions for ReplacementEdit | |
| def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): | |
| words_x = x.split(" ") | |
| words_y = y.split(" ") | |
| if len(words_x) != len(words_y): | |
| raise ValueError( | |
| f"attention replacement edit can only be applied on prompts with the same length" | |
| f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words." | |
| ) | |
| inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] | |
| inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] | |
| inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] | |
| mapper = np.zeros((max_len, max_len)) | |
| i = j = 0 | |
| cur_inds = 0 | |
| while i < max_len and j < max_len: | |
| if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: | |
| inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] | |
| if len(inds_source_) == len(inds_target_): | |
| mapper[inds_source_, inds_target_] = 1 | |
| else: | |
| ratio = 1 / len(inds_target_) | |
| for i_t in inds_target_: | |
| mapper[inds_source_, i_t] = ratio | |
| cur_inds += 1 | |
| i += len(inds_source_) | |
| j += len(inds_target_) | |
| elif cur_inds < len(inds_source): | |
| mapper[i, j] = 1 | |
| i += 1 | |
| j += 1 | |
| else: | |
| mapper[j, j] = 1 | |
| i += 1 | |
| j += 1 | |
| return torch.from_numpy(mapper).float() | |
| def get_replacement_mapper(prompts, tokenizer, max_len=77): | |
| x_seq = prompts[0] | |
| mappers = [] | |
| for i in range(1, len(prompts)): | |
| mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) | |
| mappers.append(mapper) | |
| return torch.stack(mappers) | |
| ### util functions for ReweightEdit | |
| def get_equalizer( | |
| text: str, | |
| word_select: Union[int, Tuple[int, ...]], | |
| values: Union[List[float], Tuple[float, ...]], | |
| tokenizer, | |
| ): | |
| if isinstance(word_select, (int, str)): | |
| word_select = (word_select,) | |
| equalizer = torch.ones(len(values), 77) | |
| values = torch.tensor(values, dtype=torch.float32) | |
| for word in word_select: | |
| inds = get_word_inds(text, word, tokenizer) | |
| equalizer[:, inds] = values | |
| return equalizer | |
| ### util functions for RefinementEdit | |
| class ScoreParams: | |
| def __init__(self, gap, match, mismatch): | |
| self.gap = gap | |
| self.match = match | |
| self.mismatch = mismatch | |
| def mis_match_char(self, x, y): | |
| if x != y: | |
| return self.mismatch | |
| else: | |
| return self.match | |
| def get_matrix(size_x, size_y, gap): | |
| matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) | |
| matrix[0, 1:] = (np.arange(size_y) + 1) * gap | |
| matrix[1:, 0] = (np.arange(size_x) + 1) * gap | |
| return matrix | |
| def get_traceback_matrix(size_x, size_y): | |
| matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) | |
| matrix[0, 1:] = 1 | |
| matrix[1:, 0] = 2 | |
| matrix[0, 0] = 4 | |
| return matrix | |
| def global_align(x, y, score): | |
| matrix = get_matrix(len(x), len(y), score.gap) | |
| trace_back = get_traceback_matrix(len(x), len(y)) | |
| for i in range(1, len(x) + 1): | |
| for j in range(1, len(y) + 1): | |
| left = matrix[i, j - 1] + score.gap | |
| up = matrix[i - 1, j] + score.gap | |
| diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) | |
| matrix[i, j] = max(left, up, diag) | |
| if matrix[i, j] == left: | |
| trace_back[i, j] = 1 | |
| elif matrix[i, j] == up: | |
| trace_back[i, j] = 2 | |
| else: | |
| trace_back[i, j] = 3 | |
| return matrix, trace_back | |
| def get_aligned_sequences(x, y, trace_back): | |
| x_seq = [] | |
| y_seq = [] | |
| i = len(x) | |
| j = len(y) | |
| mapper_y_to_x = [] | |
| while i > 0 or j > 0: | |
| if trace_back[i, j] == 3: | |
| x_seq.append(x[i - 1]) | |
| y_seq.append(y[j - 1]) | |
| i = i - 1 | |
| j = j - 1 | |
| mapper_y_to_x.append((j, i)) | |
| elif trace_back[i][j] == 1: | |
| x_seq.append("-") | |
| y_seq.append(y[j - 1]) | |
| j = j - 1 | |
| mapper_y_to_x.append((j, -1)) | |
| elif trace_back[i][j] == 2: | |
| x_seq.append(x[i - 1]) | |
| y_seq.append("-") | |
| i = i - 1 | |
| elif trace_back[i][j] == 4: | |
| break | |
| mapper_y_to_x.reverse() | |
| return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) | |
| def get_mapper(x: str, y: str, tokenizer, max_len=77): | |
| x_seq = tokenizer.encode(x) | |
| y_seq = tokenizer.encode(y) | |
| score = ScoreParams(0, 1, -1) | |
| matrix, trace_back = global_align(x_seq, y_seq, score) | |
| mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] | |
| alphas = torch.ones(max_len) | |
| alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() | |
| mapper = torch.zeros(max_len, dtype=torch.int64) | |
| mapper[: mapper_base.shape[0]] = mapper_base[:, 1] | |
| mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq)) | |
| return mapper, alphas | |
| def get_refinement_mapper(prompts, tokenizer, max_len=77): | |
| x_seq = prompts[0] | |
| mappers, alphas = [], [] | |
| for i in range(1, len(prompts)): | |
| mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len) | |
| mappers.append(mapper) | |
| alphas.append(alpha) | |
| return torch.stack(mappers), torch.stack(alphas) | |