Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,023 Bytes
010341e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# Copyright 2025 ASLP Lab and Xiaomi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import torch
import math
from torch import nn
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, LlamaConfig
from .llama_nar import LlamaNARDecoderLayer
class TextEmbedding(nn.Module):
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
def forward(self, text: int["b nt"]): # noqa: F722
text = self.text_embed(text) # b n -> b n d
return text
class InputEmbedding(nn.Module):
def __init__(self, cond_dim, out_dim):
super().__init__()
self.proj = nn.Linear(cond_dim, cond_dim)
self.proj_2 = nn.Linear(cond_dim, out_dim)
def forward(self, x, style_emb, time_emb): # noqa: F722
style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
x_orig = x
x = x + style_emb + time_emb
x = self.proj(x) + x_orig
x = self.proj_2(x)
return x
class AdaLayerNormZero_Final(nn.Module):
def __init__(self, dim, cond_dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(cond_dim, dim * 2)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
class SinusPositionEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(-1) * emb.unsqueeze(0).unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
def numel(self):
return 0
class TimestepEmbedding(nn.Module):
def __init__(self, dim, freq_embed_dim=256):
super().__init__()
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
def forward(self, timestep: float["b"]): # noqa: F821
time_hidden = self.time_embed(timestep)
time_hidden = time_hidden.to(timestep.dtype)
time = self.time_mlp(time_hidden) # b d
return time
class DiT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
ff_mult=4,
mel_dim=100,
text_num_embeds=256,
conv_layers=0,
long_skip_connection=False,
use_flex_attn=False,
repa_depth=-1,
repa_dims=[1024],
**kwargs
):
super().__init__()
cond_dim = 512
self.time_embed = TimestepEmbedding(cond_dim)
self.text_embed = TextEmbedding(text_num_embeds, cond_dim, conv_layers=conv_layers)
self.input_embed = InputEmbedding(cond_dim, dim)
self.latent_embed = torch.nn.Sequential(
nn.Linear(mel_dim, cond_dim),
nn.Linear(cond_dim, cond_dim)
)
self.dim = dim
self.depth = depth
self.use_flex_attn = use_flex_attn
llama_config = LlamaConfig(
hidden_size=dim,
num_attention_heads=heads,
intermediate_size=dim * ff_mult,
hidden_act='silu',
max_position_embeddings=4096
)
self.rotary_embed = LlamaRotaryEmbedding(config=llama_config)
llama_config._attn_implementation = 'sdpa'
self.transformer_blocks = nn.ModuleList(
[LlamaNARDecoderLayer(llama_config, layer_idx=i, use_flex_attn=self.use_flex_attn) for i in range(depth)]
)
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
self.repa_depth = repa_depth
self.repa_dims = repa_dims
self.projectors = None
if self.repa_depth > 0:
self.projectors = nn.ModuleList([
nn.Sequential(
nn.Linear(self.dim, self.dim * 2),
nn.SiLU(),
nn.Linear(self.dim * 2, self.dim * 2),
nn.SiLU(),
nn.Linear(self.dim * 2, repa_dim),
) for repa_dim in self.repa_dims
])
def forward(
self,
x: torch.Tensor,
time: torch.Tensor,
position_ids: torch.Tensor,
style_prompt: torch.Tensor,
attn_mask: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value = None,
):
"""
Args:
x: [b, n, d]
time: [b, n, 1]
position_ids: [b, n]
style_prompt: [b, 512]
attn_mask: [b, 1, n, n]
"""
batch, seq_len = x.shape[0], x.shape[1]
t = self.time_embed(time)
c = t # [B, T, dim]
x = self.input_embed(x, style_prompt, c)
if self.long_skip_connection is not None:
residual = x
position_embeddings = self.rotary_embed(x, position_ids)
attn_weights = []
if not use_cache:
past_key_value = None
repa_res = None
for i, block in enumerate(self.transformer_blocks):
res = block(
x,
attention_mask=attn_mask,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
past_key_value=past_key_value,
use_cache=use_cache
)
x = res.pop(0)
if output_attentions:
attn_weights.append(res.pop(0))
if use_cache:
past_key_value = res.pop(0)
if i == self.repa_depth - 1:
repa_res = x
if self.long_skip_connection is not None:
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
x = self.norm_out(x, c)
output = self.proj_out(x)
return output, attn_weights, past_key_value |