Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,799 Bytes
010341e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from torch.nn.attention.flex_attention import BlockMask, flex_attention
from torch.nn.attention.flex_attention import (
create_block_mask as create_block_causal_mask_flex,
)
class WrappedFlexAttention:
"""
We are doing a singleton class so that flex attention is compiled once when it's first called.
"""
_instance = None
_is_flex_compiled = False
_compiled_flex_attention = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
# Create a new instance if one doesn't already exist
cls._instance = super().__new__(cls)
return cls._instance
@torch.compiler.disable(recursive=False)
def __init__(self, training):
"""
Initialize or update the singleton instance.
"""
if not self._is_flex_compiled or training != self.training:
# In PyTorch 2.6.0, there's a known issue with flex attention compilation which may
# cause errors. The suggested fix is to compile with "max-autotune-no-cudagraphs"
# see https://github.com/pytorch/pytorch/issues/146260 for training
self.training = training
if torch.__version__.split("+")[0] == "2.6.0" and training:
self._compiled_flex_attention = torch.compile(
flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs"
)
else:
self._compiled_flex_attention = torch.compile(flex_attention)
self._is_flex_compiled = True
def __call__(self):
return self._compiled_flex_attention
Offset = Union[torch.Tensor, int]
def make_flex_block_causal_mask(
attention_mask_2d: torch.Tensor,
attention_chunk_size: Optional[int] = None,
query_length=None,
key_length=None,
offsets: Optional[Tuple[Offset, Offset]] = None,
) -> "BlockMask":
"""
Create a block causal document mask for a batch of sequences, both packed and unpacked.
Create Block causal logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`.
The resultant BlockMask is a compressed representation of the full block causal
mask. BlockMask is essential for performant computation of flex attention.
See: https://pytorch.org/blog/flexattention/
Args:
attention_mask_2d (torch.Tensor): Attention mask for packed and padded sequences
of shape (batch_size, total_seq_len). e.g.
For unpacked sequence:
[[1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 0]]
For packed sequence:
[[1, 1, 1, 2, 2, 2, 0],
[1, 1, 2, 2, 2, 3, 3]]
Returns:
BlockMask
"""
batch_size, total_seq_len = attention_mask_2d.shape
if not key_length:
key_length = total_seq_len
if not query_length:
query_length = total_seq_len
attention_mask_2d = torch.nn.functional.pad(attention_mask_2d, value=0, pad=(0, key_length))
device = attention_mask_2d.device
document_ids = attention_mask_2d.clone()
if attention_chunk_size is not None:
# we create an arange, then we just // by chunk size to get [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
document_ids = (document_ids.fill_(1).cumsum(-1) - 1) // (attention_chunk_size)
# Instead of passing a tensor mask, flex attention requires a mask_mod function
# that determines which elements of QK^T should be included in the attention
# computation prior to the softmax. For sample packing, we need both the
# logic for both causal mask and document mask. See PyTorch's official
# blog post for more details: https://pytorch.org/blog/flexattention/#mask-mods
def causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
"""
Defines the logic of a block causal mask by combining both a standard causal mask
and a block diagonal document mask.
See :func:`~torchtune.modules.attention_utils.create_block_causal_mask`
for an illustration.
"""
causal_mask = q_idx >= kv_idx # not valid when decoding
document_mask = document_ids[batch_idx, q_idx] == document_ids[batch_idx, kv_idx]
padding_mask = attention_mask_2d[batch_idx, q_idx] > 0
final_mask = causal_mask & padding_mask & document_mask
return final_mask
if offsets is not None:
q_offset = offsets[0]
kv_offset = offsets[1]
def mask_mod(batch_idx, head_idx, q_idx, kv_idx):
offset_q = q_idx + q_offset
offset_kv = kv_idx + kv_offset
return causal_mask_mod(batch_idx, head_idx, offset_q, offset_kv)
else:
mask_mod = causal_mask_mod
return create_block_causal_mask_flex(
mask_mod=mask_mod,
B=batch_size,
H=None, # attention head
Q_LEN=query_length,
KV_LEN=key_length,
device=device,
_compile=True,
)
@torch.compiler.disable(recursive=False)
def compile_friendly_flex_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
training=False,
**kwargs,
) -> torch.Tensor:
# First call initialise singleton wrapper object, second call invokes the object method to return compiled flex attention
flex_attention_compiled = WrappedFlexAttention(training)()
return flex_attention_compiled(
query,
key,
value,
**kwargs,
)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def flex_attention_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Union[torch.Tensor, "BlockMask"],
training: bool = True,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
head_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
block_mask = None
causal_mask = None
block_mask = attention_mask
# if isinstance(attention_mask, BlockMask):
# block_mask = attention_mask
# else:
# causal_mask = attention_mask
if causal_mask is not None:
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
if softcap is not None:
score = softcap * torch.tanh(score / softcap)
if causal_mask is not None:
score = score + causal_mask[batch_idx][0][q_idx][kv_idx]
if head_mask is not None:
score = score + head_mask[batch_idx][head_idx][0][0]
return score
enable_gqa = True
num_local_query_heads = query.shape[1]
# When running TP this helps:
if not ((num_local_query_heads & (num_local_query_heads - 1)) == 0):
key = repeat_kv(key, query.shape[1] // key.shape[1])
value = repeat_kv(value, query.shape[1] // value.shape[1])
enable_gqa = False
kernel_options = kwargs.get("kernel_options", None)
attn_output, attention_weights = compile_friendly_flex_attention(
query,
key,
value,
score_mod=score_mod,
block_mask=block_mask,
enable_gqa=enable_gqa,
scale=scaling,
kernel_options=kernel_options,
# Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
# For simplification, we thus always return it as no additional computations are introduced.
return_lse=True,
training=training,
)
# lse is returned in float32
attention_weights = attention_weights.to(value.dtype)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attention_weights |