Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,906 Bytes
010341e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# Copyright 2025 ASLP Lab and Xiaomi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import torch
from torch import nn
from tqdm import tqdm
from torchdiffeq import odeint
from .backbones.dit import DiT
from .cache_utils import BlockFlowMatchingCache
from torch.nn.attention.flex_attention import create_block_mask
def all_mask(b, h, q_idx, kv_idx):
return q_idx == q_idx
class CFM(nn.Module):
def __init__(
self,
transformer: DiT,
sigma=0.0,
odeint_kwargs: dict = dict(
# atol = 1e-5,
# rtol = 1e-5,
method="euler" # 'midpoint'
# method="adaptive_heun"
),
odeint_options: dict = dict(
min_step=0.05
),
num_channels=None,
block_size=None,
num_history_block=None
):
super().__init__()
self.num_channels = num_channels
# transformer
self.transformer = transformer
dim = transformer.dim
self.dim = dim
# conditional flow related
self.sigma = sigma
# sampling related
self.odeint_kwargs = odeint_kwargs
print(f"ODE SOLVER: {self.odeint_kwargs['method']}")
self.odeint_options = odeint_options
self.block_size = block_size
self.num_history_block = num_history_block
if self.num_history_block is not None and self.num_history_block <= 0:
self.num_history_block = None
print(f"block_size: {self.block_size}; num_history_block: {self.num_history_block}")
@property
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def sample_block_cache(
self,
text,
duration, # noqa: F821
style_prompt,
steps=32,
cfg_strength=1.0,
odeint_method='euler'
):
self.eval()
batch = text.shape[0]
device = self.device
num_blocks = duration // self.block_size + (duration % self.block_size > 0)
text_emb = self.transformer.text_embed(text)
cfg_text_emb = self.transformer.text_embed(torch.zeros_like(text))
text_lens = torch.LongTensor([text_emb.shape[1]]).to(device)
clean_emb_stream = torch.zeros(batch, 0, self.num_channels, device=device, dtype=text_emb.dtype)
noisy_lens = torch.LongTensor([self.block_size]).to(device)
block_iterator = range(num_blocks)
# create cache
kv_cache = BlockFlowMatchingCache(text_lengths=text_lens, num_history_block=self.num_history_block)
cfg_kv_cache = BlockFlowMatchingCache(text_lengths=text_lens, num_history_block=self.num_history_block)
cache_time = torch.tensor([1], device=device)[:, None].repeat(batch, self.block_size).to(style_prompt.dtype)
# generate text cache
text_time = torch.tensor([-1], device=device)[:, None].repeat(batch, text_emb.shape[1]).to(style_prompt.dtype)
text_position_ids = torch.arange(0, text_emb.shape[1], device=device)[None, :].repeat(batch, 1)
text_attn_mask = torch.ones(batch, 1, text_emb.shape[1], text_emb.shape[1], device=device).bool()
# text_attn_mask = create_block_mask(
# all_mask,
# B = batch,
# H = None,
# Q_LEN=text_emb.shape[1],
# KV_LEN=text_emb.shape[1]
# )
if text_emb.shape[1] != 0:
with kv_cache.cache_text():
_, _, kv_cache = self.transformer(
x = text_emb,
time=text_time,
attn_mask=text_attn_mask,
position_ids=text_position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
with cfg_kv_cache.cache_text():
_, _, cfg_kv_cache = self.transformer(
x = cfg_text_emb,
time=text_time,
attn_mask=text_attn_mask,
position_ids=text_position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
end_pos = 0
for bid in block_iterator:
clean_lens = torch.LongTensor([clean_emb_stream.shape[1]]).to(device)
#print(text_lens, clean_lens, noisy_lens, clean_emb_stream.shape, flush=True)
# all one mask
attn_mask = torch.ones(batch, 1, noisy_lens.max(), (text_lens + clean_lens + noisy_lens).max(), device=device).bool() # [B, 1, Q, KV]
# attn_mask = create_block_mask(
# all_mask,
# B = batch,
# H = None,
# Q_LEN=noisy_lens.max(),
# KV_LEN=(text_lens + clean_lens + noisy_lens).max()
# )
# generate position id
position_ids = torch.arange(0, (clean_lens + noisy_lens).max(), device=device)[None, :].repeat(batch, 1)
position_ids = position_ids[:, -noisy_lens.max():]
# core sample fn
def fn(t, x):
noisy_embed = self.transformer.latent_embed(x)
if t.ndim == 0:
t = t.repeat(batch)
time = t[:, None].repeat(1, noisy_lens.max())
pred, *_ = self.transformer(
x=noisy_embed,
time=time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
if cfg_strength < 1e-5:
return pred
null_pred, *_ = self.transformer(
x=noisy_embed,
time=time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
return pred + (pred - null_pred) * cfg_strength
# generate time
noisy_emb = torch.randn(batch, self.block_size, self.num_channels, device=device, dtype=style_prompt.dtype)
t_start = 0
t_set = torch.linspace(t_start, 1, steps, device=device, dtype=noisy_emb.dtype)
# sampling
outputs = odeint(fn, noisy_emb, t_set, method=odeint_method)
sampled = outputs[-1]
# generate next kv cache
cache_embed = self.transformer.latent_embed(sampled)
with kv_cache.cache_context():
_, _, kv_cache = self.transformer(
x = cache_embed,
time=cache_time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
with cfg_kv_cache.cache_context():
_, _, cfg_kv_cache = self.transformer(
x = cache_embed,
time=cache_time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
# push new block
clean_emb_stream = torch.cat([clean_emb_stream, sampled], dim=1)
pos = -1
curr_frame = clean_emb_stream[:, pos, :]
eos = torch.ones_like(curr_frame)
last_kl = torch.nn.functional.mse_loss(
curr_frame,
eos
)
if last_kl.abs() <= 0.05:
while last_kl.abs() <= 0.05 and abs(pos) < clean_emb_stream.shape[1]:
pos -= 1
curr_frame = clean_emb_stream[:, pos, :]
last_kl = torch.nn.functional.mse_loss(
curr_frame,
eos
)
end_pos = clean_emb_stream.shape[1] + pos
break
else:
end_pos = clean_emb_stream.shape[1]
clean_emb_stream = clean_emb_stream[:, :end_pos, :]
return clean_emb_stream
def sample_cache_stream(
self,
decoder,
text,
duration, # noqa: F821
style_prompt,
steps=32,
cfg_strength=1.0,
seed: int | None = None,
chunk_size=10,
overlap=2,
odeint_method='euler'
):
self.eval()
batch = text.shape[0]
device = self.device
num_blocks = duration // self.block_size + (duration % self.block_size > 0)
text_emb = self.transformer.text_embed(text)
cfg_text_emb = self.transformer.text_embed(torch.zeros_like(text))
text_lens = torch.LongTensor([text_emb.shape[1]]).to(device)
clean_emb_stream = torch.zeros(batch, 0, self.num_channels, device=device, dtype=text_emb.dtype)
noisy_lens = torch.LongTensor([self.block_size]).to(device)
block_iterator = range(num_blocks)
# create cache
kv_cache = BlockFlowMatchingCache(text_lengths=text_lens, num_history_block=self.num_history_block)
cfg_kv_cache = BlockFlowMatchingCache(text_lengths=text_lens, num_history_block=self.num_history_block)
cache_time = torch.tensor([1], device=device)[:, None].repeat(batch, self.block_size).to(style_prompt.dtype)
# generate text cache
text_time = torch.tensor([-1], device=device)[:, None].repeat(batch, text_emb.shape[1]).to(style_prompt.dtype)
text_position_ids = torch.arange(0, text_emb.shape[1], device=device)[None, :].repeat(batch, 1)
text_attn_mask = torch.ones(batch, 1, text_emb.shape[1], text_emb.shape[1], device=device).bool()
if text_emb.shape[1] != 0:
with kv_cache.cache_text():
_, _, kv_cache = self.transformer(
x = text_emb,
time=text_time,
attn_mask=text_attn_mask,
position_ids=text_position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
with cfg_kv_cache.cache_text():
_, _, cfg_kv_cache = self.transformer(
x = cfg_text_emb,
time=text_time,
attn_mask=text_attn_mask,
position_ids=text_position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
end_pos = 0
last_decoder_pos = 0
decode_audio = []
for bid in block_iterator:
clean_lens = torch.LongTensor([clean_emb_stream.shape[1]]).to(device)
#print(text_lens, clean_lens, noisy_lens, clean_emb_stream.shape, flush=True)
# all one mask
attn_mask = torch.ones(batch, 1, noisy_lens.max(), (text_lens + clean_lens + noisy_lens).max(), device=device).bool() # [B, 1, Q, KV]
# generate position id
position_ids = torch.arange(0, (clean_lens + noisy_lens).max(), device=device)[None, :].repeat(batch, 1)
position_ids = position_ids[:, -noisy_lens.max():]
# core sample fn
def fn(t, x):
noisy_embed = self.transformer.latent_embed(x)
if t.ndim == 0:
t = t.repeat(batch)
time = t[:, None].repeat(1, noisy_lens.max())
pred, *_ = self.transformer(
x=noisy_embed,
time=time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
if cfg_strength < 1e-5:
return pred
null_pred, *_ = self.transformer(
x=noisy_embed,
time=time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
return pred + (pred - null_pred) * cfg_strength
# generate time
noisy_emb = torch.randn(batch, self.block_size, self.num_channels, device=device, dtype=style_prompt.dtype)
t_start = 0
t_set = torch.linspace(t_start, 1, steps, device=device, dtype=noisy_emb.dtype)
# sampling
outputs = odeint(fn, noisy_emb, t_set, method=odeint_method)
sampled = outputs[-1]
# generate next kv cache
cache_embed = self.transformer.latent_embed(sampled)
with kv_cache.cache_context():
_, _, kv_cache = self.transformer(
x = cache_embed,
time=cache_time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=style_prompt,
use_cache=True,
past_key_value = kv_cache
)
with cfg_kv_cache.cache_context():
_, _, cfg_kv_cache = self.transformer(
x = cache_embed,
time=cache_time,
attn_mask=attn_mask,
position_ids=position_ids,
style_prompt=torch.zeros_like(style_prompt),
use_cache=True,
past_key_value = cfg_kv_cache
)
# push new block
clean_emb_stream = torch.cat([clean_emb_stream, sampled], dim=1)
pos = -1
curr_frame = clean_emb_stream[:, pos, :]
eos = torch.ones_like(curr_frame)
last_kl = torch.nn.functional.mse_loss(
curr_frame,
eos
)
if last_kl.abs() <= 0.05:
while last_kl.abs() <= 0.05 and abs(pos) < clean_emb_stream.shape[1]:
pos -= 1
curr_frame = clean_emb_stream[:, pos, :]
last_kl = torch.nn.functional.mse_loss(
curr_frame,
eos
)
end_pos = clean_emb_stream.shape[1] + pos
break
else:
end_pos = clean_emb_stream.shape[1]
if end_pos - last_decoder_pos >= chunk_size:
start = max(0, last_decoder_pos - overlap)
overlap_frame = max(0, last_decoder_pos - start)
latent = clean_emb_stream[:, start:end_pos, :]
audio = decoder.decoder(latent.transpose(1, 2)) # [B, C, T]
# print(last_decoder_pos, start, end_pos, latent.shape, audio.shape, clean_emb_stream.shape, chunk_size, overlap_frame, last_decoder_pos-overlap, last_decoder_pos-start)
audio = audio[:, :, overlap_frame * 9600:]
print(audio.shape)
yield audio
last_decoder_pos = end_pos
clean_emb_stream = clean_emb_stream[:, :end_pos, :]
start = max(0, last_decoder_pos - overlap)
overlap = max(0, last_decoder_pos - start)
latent = clean_emb_stream[:, start:end_pos, :]
audio = decoder.decoder(latent.transpose(1, 2)) # [B, C, T]
audio = audio[:, :, overlap * 9600:]
print("last", audio.shape)
audio = torch.cat([audio, torch.zeros(audio.shape[0], audio.shape[1], 5, device=audio.device, dtype=audio.dtype)], dim=-1)
print(audio.shape)
yield audio
|