Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,007 Bytes
251501d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import torch
import torchaudio
import os
import json
import random
import io
from huggingface_hub import hf_hub_download
from muq import MuQMuLan
from diffrhythm2.cfm import CFM
from diffrhythm2.backbones.dit import DiT
from bigvgan.model import Generator
STRUCT_INFO = {
"[start]": 500,
"[end]": 501,
"[intro]": 502,
"[verse]": 503,
"[chorus]": 504,
"[outro]": 505,
"[inst]": 506,
"[solo]": 507,
"[bridge]": 508,
"[hook]": 509,
"[break]": 510,
"[stop]": 511,
"[space]": 512
}
class CNENTokenizer():
def __init__(self):
curr_path = os.path.abspath(__file__)
vocab_path = os.path.join(os.path.dirname((os.path.dirname(curr_path))), "g2p/g2p/vocab.json")
with open(vocab_path, 'r') as file:
self.phone2id:dict = json.load(file)['vocab']
self.id2phone = {v:k for (k, v) in self.phone2id.items()}
from g2p.g2p_generation import chn_eng_g2p
self.tokenizer = chn_eng_g2p
def encode(self, text):
phone, token = self.tokenizer(text)
token = [x+1 for x in token]
return token
def decode(self, token):
return "|".join([self.id2phone[x-1] for x in token])
def prepare_model(repo_id, device, dtype):
diffrhythm2_ckpt_path = hf_hub_download(
repo_id=repo_id,
filename="model.safetensors",
local_dir="./ckpt",
local_files_only=False,
)
diffrhythm2_config_path = hf_hub_download(
repo_id=repo_id,
filename="model.json",
local_dir="./ckpt",
local_files_only=False,
)
with open(diffrhythm2_config_path) as f:
model_config = json.load(f)
model_config['use_flex_attn'] = False
diffrhythm2 = CFM(
transformer=DiT(
**model_config
),
num_channels=model_config['mel_dim'],
block_size=model_config['block_size'],
)
total_params = sum(p.numel() for p in diffrhythm2.parameters())
diffrhythm2 = diffrhythm2.to(device).to(dtype)
if diffrhythm2_ckpt_path.endswith('.safetensors'):
from safetensors.torch import load_file
ckpt = load_file(diffrhythm2_ckpt_path)
else:
ckpt = torch.load(diffrhythm2_ckpt_path, map_location='cpu')
diffrhythm2.load_state_dict(ckpt)
print(f"Total params: {total_params:,}")
# load Mulan
mulan = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large", cache_dir="./ckpt").to(device).to(dtype)
# load frontend
lrc_tokenizer = CNENTokenizer()
# load decoder
decoder_ckpt_path = hf_hub_download(
repo_id=repo_id,
filename="decoder.bin",
local_dir="./ckpt",
local_files_only=False,
)
decoder_config_path = hf_hub_download(
repo_id=repo_id,
filename="decoder.json",
local_dir="./ckpt",
local_files_only=False,
)
decoder = Generator(decoder_config_path, decoder_ckpt_path)
decoder = decoder.to(device).to(dtype)
return diffrhythm2, mulan, lrc_tokenizer, decoder
def parse_lyrics(lrc_tokenizer, lyrics: str):
lyrics_with_time = []
lyrics = lyrics.split("\n")
for line in lyrics:
struct_idx = STRUCT_INFO.get(line, None)
if struct_idx is not None:
lyrics_with_time.append([struct_idx, STRUCT_INFO['[stop]']])
else:
tokens = lrc_tokenizer.encode(line.strip())
tokens = tokens + [STRUCT_INFO['[stop]']]
lyrics_with_time.append(tokens)
return lyrics_with_time
@torch.no_grad()
def get_audio_prompt(model, audio_file, device, dtype):
prompt_wav, sr = torchaudio.load(audio_file)
prompt_wav = torchaudio.functional.resample(prompt_wav.to(device).to(dtype), sr, 24000)
if prompt_wav.shape[1] > 24000 * 10:
start = random.randint(0, prompt_wav.shape[1] - 24000 * 10)
prompt_wav = prompt_wav[:, start:start+24000*10]
prompt_wav = prompt_wav.mean(dim=0, keepdim=True)
with torch.no_grad():
style_prompt_embed = model(wavs = prompt_wav)
return style_prompt_embed.squeeze(0).detach()
@torch.no_grad()
def get_text_prompt(model, text, device, dtype):
with torch.no_grad():
style_prompt_embed = model(texts = [text])
return style_prompt_embed.squeeze(0).detach()
@torch.no_grad()
def make_fake_stereo(audio, sampling_rate):
left_channel = audio
right_channel = audio.clone()
right_channel = right_channel * 0.8
delay_samples = int(0.01 * sampling_rate)
right_channel = torch.roll(right_channel, delay_samples)
right_channel[:,:delay_samples] = 0
# stereo_audio = np.concatenate([left_channel, right_channel], axis=0)
stereo_audio = torch.cat([left_channel, right_channel], dim=0)
return stereo_audio
def inference(
model,
decoder,
text,
style_prompt,
duration,
cfg_strength=1.0,
sample_steps=32,
fake_stereo=True,
odeint_method='euler',
file_type="wav"
):
with torch.inference_mode():
latent = model.sample_block_cache(
text=text.unsqueeze(0),
duration=int(duration * 5),
style_prompt=style_prompt.unsqueeze(0),
steps=sample_steps,
cfg_strength=cfg_strength,
odeint_method=odeint_method
)
latent = latent.transpose(1, 2).detach()
audio = decoder.decode_audio(latent, overlap=5, chunk_size=20).detach()
num_channels = 1
audio = audio.float().cpu().detach().squeeze()[None, :]
if fake_stereo:
audio = make_fake_stereo(audio, decoder.h.sampling_rate)
num_channels = 2
if file_type == 'wav':
return (decoder.h.sampling_rate, audio.numpy().T) # [channel, time]
else:
buffer = io.BytesIO()
torchaudio.save(buffer, audio, decoder.h.sampling_rate, format=file_type)
return buffer.getvalue()
def inference_stream(
model,
decoder,
text,
style_prompt,
duration,
cfg_strength=1.0,
sample_steps=32,
fake_stereo=True,
odeint_method='euler',
file_type="wav"
):
with torch.inference_mode():
for audio in model.sample_cache_stream(
decoder=decoder,
text=text.unsqueeze(0),
duration=int(duration * 5),
style_prompt=style_prompt.unsqueeze(0),
steps=sample_steps,
cfg_strength=cfg_strength,
chunk_size=20,
overlap=5,
odeint_method=odeint_method
):
audio = audio.float().cpu().numpy().squeeze()[None, :]
if fake_stereo:
audio = make_fake_stereo(audio, decoder.h.sampling_rate)
# encoded_audio = io.BytesIO()
# torchaudio.save(encoded_audio, audio, decoder.h.sampling_rate, format='wav')
yield (decoder.h.sampling_rate, audio.T) # [channel, time]
|