File size: 5,843 Bytes
010341e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2025 ASLP Lab and Xiaomi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from transformers import LlamaConfig
import torch

import torch.nn as nn
from typing import Optional, Tuple
import math

from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from .llama_attention import LLAMA_ATTENTION_CLASSES

# sinusoidal positional encoding
class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :] * 1.0
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class LlamaAdaptiveRMSNorm(nn.Module):
    def __init__(self, hidden_size=1024, eps=1e-6, dim_cond=1024):
        super().__init__()
        self.to_weight = nn.Linear(dim_cond, hidden_size)
        nn.init.zeros_(self.to_weight.weight)
        nn.init.ones_(self.to_weight.bias)
        self.variance_epsilon = eps
        self._is_hf_initialized = True  # disable automatic init

    def forward(self, hidden_states, cond_embedding):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        weight = self.to_weight(cond_embedding)
        if len(weight.shape) == 2:
            weight = weight.unsqueeze(1)

        return (weight * hidden_states).to(input_dtype)


class LlamaNARDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig, layer_idx: int, use_flex_attn: bool=False):
        """Override to adaptive layer norm"""
        super().__init__(config, layer_idx)  # init attention, mlp, etc.
        _attn_implementation = config._attn_implementation
        if use_flex_attn:
            _attn_implementation = "flex_attention"
            # _attn_implementation = "flash_attention_2"
        self.self_attn = LLAMA_ATTENTION_CLASSES[_attn_implementation](config=config, layer_idx=layer_idx)
        # self.input_layernorm = LlamaAdaptiveRMSNorm(
        #     config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
        # )
        # self.post_attention_layernorm = LlamaAdaptiveRMSNorm(
        #     config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
        # )

    # add `cond` in forward function
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_embeddings: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states
        # print(-1, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        hidden_states = self.input_layernorm(
            hidden_states
        )
        # print(0, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_embeddings=position_embeddings,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        # print(1, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        hidden_states = residual + hidden_states
        # print(2, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(
            hidden_states
        )
        # print(3, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        # print(4, hidden_states.isnan().sum(), hidden_states.isinf().sum())
        outputs = [hidden_states,]

        if output_attentions:
            outputs += [self_attn_weights,]

        if use_cache:
            outputs += [present_key_value,]

        return outputs