DiffRhythm2 / diffrhythm2 /cache_utils.py
ASLP-lab's picture
init
010341e verified
raw
history blame
6.49 kB
# Copyright 2025 ASLP Lab and Xiaomi Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import Optional, List, Tuple, Dict, Any
from transformers.cache_utils import Cache
from contextlib import contextmanager
class BlockFlowMatchingCache(Cache):
def __init__(
self,
text_lengths: Optional[torch.Tensor] = None,
block_size: Optional[int] = None,
num_history_block: Optional[int] = None
) -> None:
super().__init__()
self._seen_tokens = 0
self.text_key_cache: List[torch.Tensor] = []
self.text_value_cache: List[torch.Tensor] = []
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.text_lengths = text_lengths
self.block_size = block_size
self.num_history_block = num_history_block
self.is_cache_text = False
self.is_storage_cache = False
assert (
(
self.num_history_block is not None
and
self.block_size is not None
) or self.num_history_block is None
), "num_history_block and block_size must be set at the same time."
@contextmanager
def cache_text(self):
self.is_cache_text = True
try:
yield self
finally:
self.is_cache_text = False
@contextmanager
def cache_context(self):
self.is_storage_cache = True
try:
yield self
finally:
self.is_storage_cache = False
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# cache text
if self.is_cache_text:
if self.text_lengths is None:
self.text_lengths = torch.LongTensor([key_states.shape[-2]] * key_states.shape[0])
self.text_key_cache.append(key_states)
self.text_value_cache.append(value_states)
return self.text_key_cache[layer_idx], self.text_value_cache[layer_idx]
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if key_states is not None:
if len(self.key_cache) <= layer_idx:
# There may be skipped layers, fill them with empty lists
for _ in range(len(self.key_cache), layer_idx + 1):
self.key_cache.append([])
self.value_cache.append([])
cached_key_state = self.key_cache[layer_idx]
cached_value_state = self.value_cache[layer_idx]
if len(cached_key_state) != 0:
key_states = torch.cat([cached_key_state, key_states], dim=-2)
value_states = torch.cat([cached_value_state, value_states], dim=-2)
if self.num_history_block is not None:
history_length = self.block_size * (self.num_history_block + 1)
key_states = key_states[:, :, -history_length:, :]
value_states = value_states[:, :, -history_length:, :]
if self.is_storage_cache:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
k_s = []
v_s = []
text_key_cache = (
self.text_key_cache[layer_idx]
if len(self.text_key_cache) > layer_idx
else torch.zeros(key_states.shape[0], key_states.shape[1], 0, key_states.shape[3], device=key_states.device, dtype=key_states.dtype)
)
text_value_cache = (
self.text_value_cache[layer_idx]
if len(self.text_value_cache) > layer_idx
else torch.zeros(value_states.shape[0], value_states.shape[1], 0, value_states.shape[3], device=value_states.device, dtype=value_states.dtype)
)
for b in range(self.text_lengths.shape[0]):
k_s.append(torch.cat([text_key_cache[b][:, :self.text_lengths[b], :], key_states[b]], dim=-2))
v_s.append(torch.cat([text_value_cache[b][:, :self.text_lengths[b], :], value_states[b]], dim=-2))
k_s = torch.nn.utils.rnn.pad_sequence(k_s, batch_first=True)
v_s = torch.nn.utils.rnn.pad_sequence(v_s, batch_first=True)
return k_s, v_s
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
is_empty_layer = (
len(self.key_cache) == 0 # no cache in any layer
or len(self.key_cache) <= layer_idx # skipped `layer_idx` and hasn't run a layer with cache after it
or len(self.key_cache[layer_idx]) == 0 # the layer has no cache
)
layer_seq_length = self.key_cache[layer_idx].shape[-2] if not is_empty_layer else 0
return layer_seq_length
def get_max_cache_shape(self) -> Optional[int]:
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
return None