Spaces:
Running
on
Zero
Running
on
Zero
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| import glob | |
| import os | |
| import torch | |
| from torch.nn.utils import weight_norm | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def apply_weight_norm(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| weight_norm(m) | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size * dilation - dilation) / 2) | |
| def load_checkpoint(filepath, device): | |
| assert os.path.isfile(filepath) | |
| print(f"Loading '{filepath}'") | |
| checkpoint_dict = torch.load(filepath, map_location=device) | |
| print("Complete.") | |
| return checkpoint_dict | |
| def save_checkpoint(filepath, obj): | |
| print(f"Saving checkpoint to {filepath}") | |
| torch.save(obj, filepath) | |
| print("Complete.") | |
| def scan_checkpoint(cp_dir, prefix, renamed_file=None): | |
| # Fallback to original scanning logic first | |
| pattern = os.path.join(cp_dir, prefix + "????????") | |
| cp_list = glob.glob(pattern) | |
| if len(cp_list) > 0: | |
| last_checkpoint_path = sorted(cp_list)[-1] | |
| print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'") | |
| return last_checkpoint_path | |
| # If no pattern-based checkpoints are found, check for renamed file | |
| if renamed_file: | |
| renamed_path = os.path.join(cp_dir, renamed_file) | |
| if os.path.isfile(renamed_path): | |
| print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'") | |
| return renamed_path | |
| return None | |