# Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from torch.nn.attention.flex_attention import BlockMask, flex_attention from torch.nn.attention.flex_attention import ( create_block_mask as create_block_causal_mask_flex, ) class WrappedFlexAttention: """ We are doing a singleton class so that flex attention is compiled once when it's first called. """ _instance = None _is_flex_compiled = False _compiled_flex_attention = None def __new__(cls, *args, **kwargs): if cls._instance is None: # Create a new instance if one doesn't already exist cls._instance = super().__new__(cls) return cls._instance @torch.compiler.disable(recursive=False) def __init__(self, training): """ Initialize or update the singleton instance. """ if not self._is_flex_compiled or training != self.training: # In PyTorch 2.6.0, there's a known issue with flex attention compilation which may # cause errors. The suggested fix is to compile with "max-autotune-no-cudagraphs" # see https://github.com/pytorch/pytorch/issues/146260 for training self.training = training if torch.__version__.split("+")[0] == "2.6.0" and training: self._compiled_flex_attention = torch.compile( flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs" ) else: self._compiled_flex_attention = torch.compile(flex_attention) self._is_flex_compiled = True def __call__(self): return self._compiled_flex_attention Offset = Union[torch.Tensor, int] def make_flex_block_causal_mask( attention_mask_2d: torch.Tensor, attention_chunk_size: Optional[int] = None, query_length=None, key_length=None, offsets: Optional[Tuple[Offset, Offset]] = None, ) -> "BlockMask": """ Create a block causal document mask for a batch of sequences, both packed and unpacked. Create Block causal logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`. The resultant BlockMask is a compressed representation of the full block causal mask. BlockMask is essential for performant computation of flex attention. See: https://pytorch.org/blog/flexattention/ Args: attention_mask_2d (torch.Tensor): Attention mask for packed and padded sequences of shape (batch_size, total_seq_len). e.g. For unpacked sequence: [[1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0]] For packed sequence: [[1, 1, 1, 2, 2, 2, 0], [1, 1, 2, 2, 2, 3, 3]] Returns: BlockMask """ batch_size, total_seq_len = attention_mask_2d.shape if not key_length: key_length = total_seq_len if not query_length: query_length = total_seq_len attention_mask_2d = torch.nn.functional.pad(attention_mask_2d, value=0, pad=(0, key_length)) device = attention_mask_2d.device document_ids = attention_mask_2d.clone() if attention_chunk_size is not None: # we create an arange, then we just // by chunk size to get [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] document_ids = (document_ids.fill_(1).cumsum(-1) - 1) // (attention_chunk_size) # Instead of passing a tensor mask, flex attention requires a mask_mod function # that determines which elements of QK^T should be included in the attention # computation prior to the softmax. For sample packing, we need both the # logic for both causal mask and document mask. See PyTorch's official # blog post for more details: https://pytorch.org/blog/flexattention/#mask-mods def causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx): """ Defines the logic of a block causal mask by combining both a standard causal mask and a block diagonal document mask. See :func:`~torchtune.modules.attention_utils.create_block_causal_mask` for an illustration. """ causal_mask = q_idx >= kv_idx # not valid when decoding document_mask = document_ids[batch_idx, q_idx] == document_ids[batch_idx, kv_idx] padding_mask = attention_mask_2d[batch_idx, q_idx] > 0 final_mask = causal_mask & padding_mask & document_mask return final_mask if offsets is not None: q_offset = offsets[0] kv_offset = offsets[1] def mask_mod(batch_idx, head_idx, q_idx, kv_idx): offset_q = q_idx + q_offset offset_kv = kv_idx + kv_offset return causal_mask_mod(batch_idx, head_idx, offset_q, offset_kv) else: mask_mod = causal_mask_mod return create_block_causal_mask_flex( mask_mod=mask_mod, B=batch_size, H=None, # attention head Q_LEN=query_length, KV_LEN=key_length, device=device, _compile=True, ) @torch.compiler.disable(recursive=False) def compile_friendly_flex_attention( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, training=False, **kwargs, ) -> torch.Tensor: # First call initialise singleton wrapper object, second call invokes the object method to return compiled flex attention flex_attention_compiled = WrappedFlexAttention(training)() return flex_attention_compiled( query, key, value, **kwargs, ) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def flex_attention_forward( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Union[torch.Tensor, "BlockMask"], training: bool = True, scaling: Optional[float] = None, softcap: Optional[float] = None, head_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: block_mask = None causal_mask = None block_mask = attention_mask # if isinstance(attention_mask, BlockMask): # block_mask = attention_mask # else: # causal_mask = attention_mask if causal_mask is not None: causal_mask = causal_mask[:, :, :, : key.shape[-2]] def score_mod(score, batch_idx, head_idx, q_idx, kv_idx): if softcap is not None: score = softcap * torch.tanh(score / softcap) if causal_mask is not None: score = score + causal_mask[batch_idx][0][q_idx][kv_idx] if head_mask is not None: score = score + head_mask[batch_idx][head_idx][0][0] return score enable_gqa = True num_local_query_heads = query.shape[1] # When running TP this helps: if not ((num_local_query_heads & (num_local_query_heads - 1)) == 0): key = repeat_kv(key, query.shape[1] // key.shape[1]) value = repeat_kv(value, query.shape[1] // value.shape[1]) enable_gqa = False kernel_options = kwargs.get("kernel_options", None) attn_output, attention_weights = compile_friendly_flex_attention( query, key, value, score_mod=score_mod, block_mask=block_mask, enable_gqa=enable_gqa, scale=scaling, kernel_options=kernel_options, # Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless. # For simplification, we thus always return it as no additional computations are introduced. return_lse=True, training=training, ) # lse is returned in float32 attention_weights = attention_weights.to(value.dtype) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attention_weights