File size: 117,424 Bytes
8150f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Complete Statistics Course - Interactive Learning Platform</title>
    <link rel="stylesheet" href="style.css">
</head>
<body>
    <!-- Top Navigation -->
    <nav class="top-nav">
        <div class="nav-container">
            <h1 class="course-title">📊 Statistics Mastery</h1>
            <button class="mobile-menu-btn" id="mobileMenuBtn">
                <span></span>
                <span></span>
                <span></span>
            </button>
        </div>
    </nav>

    <!-- Main Container -->
    <div class="main-container">
        <!-- Sidebar Navigation -->
        <aside class="sidebar" id="sidebar">
            <div class="sidebar-content">
                <h3>Course Content</h3>
                
                <div class="module">
                    <h4 class="module-title">Module 1: Introduction</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-1" class="topic-link" data-topic="1">📊 What is Statistics</a></li>
                        <li><a href="#topic-2" class="topic-link" data-topic="2">👥 Population vs Sample</a></li>
                        <li><a href="#topic-3" class="topic-link" data-topic="3">📈 Parameters vs Statistics</a></li>
                        <li><a href="#topic-4" class="topic-link" data-topic="4">🔢 Types of Data</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 2: Descriptive Statistics</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-5" class="topic-link" data-topic="5">📍 Central Tendency</a></li>
                        <li><a href="#topic-6" class="topic-link" data-topic="6">⚡ Outliers</a></li>
                        <li><a href="#topic-7" class="topic-link" data-topic="7">📏 Variance &amp; Std Dev</a></li>
                        <li><a href="#topic-8" class="topic-link" data-topic="8">🎯 Quartiles &amp; Percentiles</a></li>
                        <li><a href="#topic-9" class="topic-link" data-topic="9">📦 Interquartile Range</a></li>
                        <li><a href="#topic-10" class="topic-link" data-topic="10">📉 Skewness</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 3: Correlation</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-11" class="topic-link" data-topic="11">🔗 Covariance</a></li>
                        <li><a href="#topic-12" class="topic-link" data-topic="12">💞 Correlation</a></li>
                        <li><a href="#topic-13" class="topic-link" data-topic="13">💪 Correlation Strength</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 4: Probability</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-14" class="topic-link" data-topic="14">🎲 Probability Basics</a></li>
                        <li><a href="#topic-15" class="topic-link" data-topic="15">🔷 Set Theory</a></li>
                        <li><a href="#topic-16" class="topic-link" data-topic="16">🔀 Conditional Probability</a></li>
                        <li><a href="#topic-17" class="topic-link" data-topic="17">🎯 Independence</a></li>
                        <li><a href="#topic-18" class="topic-link" data-topic="18">🧮 Bayes' Theorem</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 5: Distributions</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-19" class="topic-link" data-topic="19">📊 PMF</a></li>
                        <li><a href="#topic-20" class="topic-link" data-topic="20">📈 PDF</a></li>
                        <li><a href="#topic-21" class="topic-link" data-topic="21">📉 CDF</a></li>
                        <li><a href="#topic-22" class="topic-link" data-topic="22">🪙 Bernoulli Distribution</a></li>
                        <li><a href="#topic-23" class="topic-link" data-topic="23">🎰 Binomial Distribution</a></li>
                        <li><a href="#topic-24" class="topic-link" data-topic="24">🔔 Normal Distribution</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 6: Hypothesis Testing</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-25" class="topic-link" data-topic="25">⚖️ Hypothesis Testing Intro</a></li>
                        <li><a href="#topic-26" class="topic-link" data-topic="26">🎯 Significance Level α</a></li>
                        <li><a href="#topic-27" class="topic-link" data-topic="27">📊 Standard Error</a></li>
                        <li><a href="#topic-28" class="topic-link" data-topic="28">📏 Z-Test</a></li>
                        <li><a href="#topic-29" class="topic-link" data-topic="29">🎚️ Z-Score &amp; Critical Values</a></li>
                        <li><a href="#topic-30" class="topic-link" data-topic="30">💯 P-Value</a></li>
                        <li><a href="#topic-31" class="topic-link" data-topic="31">↔️ One vs Two Tailed</a></li>
                        <li><a href="#topic-32" class="topic-link" data-topic="32">📐 T-Test</a></li>
                        <li><a href="#topic-33" class="topic-link" data-topic="33">🔓 Degrees of Freedom</a></li>
                        <li><a href="#topic-34" class="topic-link" data-topic="34">⚠️ Type I &amp; II Errors</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 7: Chi-Squared Tests</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-35" class="topic-link" data-topic="35">χ² Chi-Squared Distribution</a></li>
                        <li><a href="#topic-36" class="topic-link" data-topic="36">✓ Goodness of Fit</a></li>
                        <li><a href="#topic-37" class="topic-link" data-topic="37">🔗 Test of Independence</a></li>
                        <li><a href="#topic-38" class="topic-link" data-topic="38">📏 Variance Testing</a></li>
                    </ul>
                </div>

                <div class="module">
                    <h4 class="module-title">Module 8: Confidence Intervals</h4>
                    <ul class="topic-list">
                        <li><a href="#topic-39" class="topic-link" data-topic="39">📊 Confidence Intervals</a></li>
                        <li><a href="#topic-40" class="topic-link" data-topic="40">± Margin of Error</a></li>
                        <li><a href="#topic-41" class="topic-link" data-topic="41">🔍 Interpreting CIs</a></li>
                    </ul>
                </div>
            </div>
        </aside>

        <!-- Main Content -->
        <main class="content" id="content">
            <!-- Topic 1: What is Statistics -->
            <section class="topic-section" id="topic-1">
                <div class="topic-header">
                    <span class="topic-number">Topic 1</span>
                    <h2>📊 What is Statistics &amp; Why It Matters</h2>
                    <p class="topic-subtitle">The science of collecting, organizing, analyzing, and interpreting data</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Statistics is a branch of mathematics that deals with data. It provides methods to make sense of numbers and help us make informed decisions based on evidence rather than guesswork.</p>
                    <p><strong>Why it matters:</strong> From business forecasting to medical research, sports analysis to government policy, statistics powers nearly every decision in our modern world.</p>
                    <p><strong>When to use it:</strong> Whenever you need to understand patterns, test theories, make predictions, or draw conclusions from data.</p>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>Imagine Netflix deciding what shows to produce. They analyze viewing statistics: what genres people watch, when they pause, what they finish. Statistics transforms millions of data points into actionable insights like "Create more thriller series" or "Release episodes on Fridays."</p>
                </div>

                <div class="content-card">
                    <h3>Two Branches of Statistics</h3>
                    <div class="two-column">
                        <div class="column">
                            <h4 style="color: #64ffda;">Descriptive Statistics</h4>
                            <ul>
                                <li>Summarizes and describes data</li>
                                <li>Uses charts, graphs, averages</li>
                                <li>Example: "Average class score is 85"</li>
                            </ul>
                        </div>
                        <div class="column">
                            <h4 style="color: #ff6b6b;">Inferential Statistics</h4>
                            <ul>
                                <li>Makes predictions and inferences</li>
                                <li>Tests hypotheses</li>
                                <li>Example: "New teaching method improves scores"</li>
                            </ul>
                        </div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Use Cases &amp; Applications</h3>
                    <ul class="use-case-list">
                        <li><strong>Healthcare:</strong> Clinical trials testing new drugs, disease outbreak tracking</li>
                        <li><strong>Business:</strong> Customer behavior analysis, sales forecasting, A/B testing</li>
                        <li><strong>Government:</strong> Census data, economic indicators, policy impact assessment</li>
                        <li><strong>Sports:</strong> Player performance metrics, game strategy optimization</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Statistics transforms raw data into meaningful insights</li>
                        <li>Two main branches: Descriptive (what happened) and Inferential (what will happen)</li>
                        <li>Essential for decision-making across all fields</li>
                        <li>Combines mathematics with real-world problem solving</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 2: Population vs Sample -->
            <section class="topic-section" id="topic-2">
                <div class="topic-header">
                    <span class="topic-number">Topic 2</span>
                    <h2>👥 Population vs Sample</h2>
                    <p class="topic-subtitle">Understanding the difference between the entire group and a subset</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> A <em>population</em> includes ALL members of a defined group. A <em>sample</em> is a subset selected from that population.</p>
                    <p><strong>Why it matters:</strong> It's usually impossible or impractical to study entire populations. Sampling allows us to make inferences about large groups by studying smaller representative groups.</p>
                    <p><strong>When to use it:</strong> Use populations when you can access all data; use samples when populations are too large, expensive, or time-consuming to study.</p>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD ANALOGY</div>
                    <p>Think of tasting soup. You don't need to eat the entire pot (population) to know if it needs salt. A single spoonful (sample) gives you a good idea—as long as you stirred it well first!</p>
                </div>

                <div class="interactive-container">
                    <h3>Interactive Visualization</h3>
                    <canvas id="populationSampleCanvas" width="800" height="400"></canvas>
                    <div class="controls">
                        <button class="btn btn-primary" id="sampleBtn">Take Sample</button>
                        <button class="btn btn-secondary" id="resetPopBtn">Reset</button>
                        <div class="slider-group">
                            <label>Sample Size: <span id="sampleSizeLabel">30</span></label>
                            <input type="range" id="sampleSizeSlider" min="10" max="100" value="30" class="slider">
                        </div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Key Differences</h3>
                    <table class="comparison-table">
                        <thead>
                            <tr>
                                <th>Aspect</th>
                                <th>Population</th>
                                <th>Sample</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                                <td>Size</td>
                                <td>Entire group (N)</td>
                                <td>Subset (n)</td>
                            </tr>
                            <tr>
                                <td>Symbol</td>
                                <td>N (uppercase)</td>
                                <td>n (lowercase)</td>
                            </tr>
                            <tr>
                                <td>Cost</td>
                                <td>High</td>
                                <td>Lower</td>
                            </tr>
                            <tr>
                                <td>Time</td>
                                <td>Long</td>
                                <td>Shorter</td>
                            </tr>
                            <tr>
                                <td>Accuracy</td>
                                <td>100% (if measured correctly)</td>
                                <td>Has sampling error</td>
                            </tr>
                        </tbody>
                    </table>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISTAKE</div>
                    <p><strong>Biased Sampling:</strong> If your sample doesn't represent the population, your conclusions will be wrong. Example: Surveying only morning shoppers at a store will miss evening customer patterns.</p>
                </div>

                <div class="callout-box tip">
                    <div class="callout-header">✅ PRO TIP</div>
                    <p>For a sample to be representative, use <strong>random sampling</strong>. Every member of the population should have an equal chance of being selected.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li><strong>Population (N):</strong> All members of a defined group</li>
                        <li><strong>Sample (n):</strong> A subset selected from the population</li>
                        <li>Good samples are <em>random</em> and <em>representative</em></li>
                        <li>Larger samples generally provide better estimates</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 3: Parameters vs Statistics -->
            <section class="topic-section" id="topic-3">
                <div class="topic-header">
                    <span class="topic-number">Topic 3</span>
                    <h2>📈 Parameters vs Statistics</h2>
                    <p class="topic-subtitle">Population measures vs sample measures</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> A <em>parameter</em> is a numerical characteristic of a <em>population</em>. A <em>statistic</em> is a numerical characteristic of a <em>sample</em>.</p>
                    <p><strong>Why it matters:</strong> We usually can't measure parameters directly (populations are too large), so we estimate them using statistics from samples.</p>
                    <p><strong>When to use it:</strong> Parameters are what we want to know; statistics are what we can calculate.</p>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>You want to know the average height of all students in your country (parameter). You can't measure everyone, so you measure 1,000 students (sample) and calculate their average height (statistic) to estimate the population parameter.</p>
                </div>

                <div class="content-card">
                    <h3>Common Parameters and Statistics</h3>
                    <table class="comparison-table">
                        <thead>
                            <tr>
                                <th>Measure</th>
                                <th>Parameter (Population)</th>
                                <th>Statistic (Sample)</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                                <td>Mean (Average)</td>
                                <td>μ (mu)</td>
                                <td>x̄ (x-bar)</td>
                            </tr>
                            <tr>
                                <td>Standard Deviation</td>
                                <td>σ (sigma)</td>
                                <td>s</td>
                            </tr>
                            <tr>
                                <td>Variance</td>
                                <td>σ²</td>
                                <td></td>
                            </tr>
                            <tr>
                                <td>Proportion</td>
                                <td>p</td>
                                <td>p̂ (p-hat)</td>
                            </tr>
                            <tr>
                                <td>Size</td>
                                <td>N</td>
                                <td>n</td>
                            </tr>
                        </tbody>
                    </table>
                </div>

                <div class="content-card">
                    <h3>The Relationship</h3>
                    <div class="formula-card">
                        <div class="formula-header">Key Concept</div>
                        <p style="text-align: center; font-size: 1.2em; margin: 20px 0;">
                            <span style="color: #ff6b6b;">Statistic</span> → Estimates → <span style="color: #64ffda;">Parameter</span>
                        </p>
                        <p>We use <strong>statistics</strong> (calculated from samples) to <strong>estimate parameters</strong> (unknown population values).</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <div>
                        <p><strong>Scenario:</strong> A factory wants to know the average weight of cereal boxes.</p>
                        <ul>
                            <li><strong>Population:</strong> All cereal boxes produced (millions)</li>
                            <li><strong>Parameter:</strong> μ = true average weight of ALL boxes (unknown)</li>
                            <li><strong>Sample:</strong> 100 randomly selected boxes</li>
                            <li><strong>Statistic:</strong> x̄ = 510 grams (calculated from the 100 boxes)</li>
                            <li><strong>Inference:</strong> We estimate μ ≈ 510 grams</li>
                        </ul>
                    </div>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISTAKE</div>
                    <p>Confusing symbols! Greek letters (μ, σ, ρ) refer to <strong>parameters</strong> (population). Roman letters (x̄, s, r) refer to <strong>statistics</strong> (sample).</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li><strong>Parameter:</strong> Describes a population (usually unknown)</li>
                        <li><strong>Statistic:</strong> Describes a sample (calculated from data)</li>
                        <li>Greek letters = population, Roman letters = sample</li>
                        <li>Statistics are used to estimate parameters</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 4: Types of Data -->
            <section class="topic-section" id="topic-4">
                <div class="topic-header">
                    <span class="topic-number">Topic 4</span>
                    <h2>🔢 Types of Data</h2>
                    <p class="topic-subtitle">Categorical, Numerical, Discrete, Continuous, Ordinal, Nominal</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Data comes in different types, and understanding these types determines which statistical methods you can use.</p>
                    <p><strong>Why it matters:</strong> Using the wrong analysis method for your data type leads to incorrect conclusions. You can't calculate an average of colors!</p>
                    <p><strong>When to use it:</strong> Before any analysis, identify your data type to choose appropriate statistical techniques.</p>
                </div>

                <div class="content-card">
                    <h3>Data Type Hierarchy</h3>
                    <div class="data-tree">
                        <div class="tree-level-1">
                            <div class="tree-node main">DATA</div>
                        </div>
                        <div class="tree-level-2">
                            <div class="tree-node categorical">CATEGORICAL</div>
                            <div class="tree-node numerical">NUMERICAL</div>
                        </div>
                        <div class="tree-level-3">
                            <div class="tree-node">Nominal</div>
                            <div class="tree-node">Ordinal</div>
                            <div class="tree-node">Discrete</div>
                            <div class="tree-node">Continuous</div>
                        </div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Categorical Data</h3>
                    <p>Represents categories or groups (qualitative)</p>
                    
                    <div class="two-column">
                        <div class="column">
                            <h4 style="color: #64ffda;">Nominal</h4>
                            <p>Categories with NO order</p>
                            <ul>
                                <li>Colors: Red, Blue, Green</li>
                                <li>Gender: Male, Female, Non-binary</li>
                                <li>Country: USA, India, Japan</li>
                                <li>Blood Type: A, B, AB, O</li>
                            </ul>
                        </div>
                        <div class="column">
                            <h4 style="color: #ff6b6b;">Ordinal</h4>
                            <p>Categories WITH meaningful order</p>
                            <ul>
                                <li>Education: High School &lt; Bachelor's &lt; Master's</li>
                                <li>Satisfaction: Poor &lt; Fair &lt; Good &lt; Excellent</li>
                                <li>Medal: Bronze &lt; Silver &lt; Gold</li>
                                <li>Size: Small &lt; Medium &lt; Large</li>
                            </ul>
                        </div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Numerical Data</h3>
                    <p>Represents quantities (quantitative)</p>
                    
                    <div class="two-column">
                        <div class="column">
                            <h4 style="color: #64ffda;">Discrete</h4>
                            <p>Countable, specific values only</p>
                            <ul>
                                <li>Number of students: 25, 30, 42</li>
                                <li>Number of cars: 0, 1, 2, 3...</li>
                                <li>Dice roll: 1, 2, 3, 4, 5, 6</li>
                                <li>Number of children: 0, 1, 2, 3...</li>
                            </ul>
                            <p><em>Can't have 2.5 students!</em></p>
                        </div>
                        <div class="column">
                            <h4 style="color: #ff6b6b;">Continuous</h4>
                            <p>Can take any value in a range</p>
                            <ul>
                                <li>Height: 165.3 cm, 180.7 cm</li>
                                <li>Weight: 68.5 kg, 72.3 kg</li>
                                <li>Temperature: 23.4°C, 24.7°C</li>
                                <li>Time: 3.25 seconds</li>
                            </ul>
                            <p><em>Infinite precision possible</em></p>
                        </div>
                    </div>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 QUICK TEST</div>
                    <p><strong>Ask yourself:</strong></p>
                    <ol>
                        <li><strong>Is it a label/category?</strong> → Categorical</li>
                        <li><strong>Is it a number?</strong> → Numerical</li>
                        <li><strong>Can you count it?</strong> → Discrete</li>
                        <li><strong>Can you measure it?</strong> → Continuous</li>
                        <li><strong>Does order matter?</strong> → Ordinal (else Nominal)</li>
                    </ol>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLES</div>
                    <table class="data-examples-table">
                        <thead>
                            <tr>
                                <th>Data</th>
                                <th>Type</th>
                                <th>Reason</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                                <td>Zip codes</td>
                                <td>Categorical (Nominal)</td>
                                <td>Numbers used as labels, not quantities</td>
                            </tr>
                            <tr>
                                <td>Test scores (A, B, C, D, F)</td>
                                <td>Categorical (Ordinal)</td>
                                <td>Categories with clear order</td>
                            </tr>
                            <tr>
                                <td>Number of pages in books</td>
                                <td>Numerical (Discrete)</td>
                                <td>Countable whole numbers</td>
                            </tr>
                            <tr>
                                <td>Reaction time in milliseconds</td>
                                <td>Numerical (Continuous)</td>
                                <td>Can be measured to any precision</td>
                            </tr>
                        </tbody>
                    </table>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISTAKE</div>
                    <p>Just because something is written as a number doesn't make it numerical! Phone numbers, jersey numbers, and zip codes are <strong>categorical</strong> because they identify categories, not quantities.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li><strong>Categorical:</strong> Labels/categories (Nominal: no order, Ordinal: has order)</li>
                        <li><strong>Numerical:</strong> Quantities (Discrete: countable, Continuous: measurable)</li>
                        <li>Data type determines which statistical methods to use</li>
                        <li>Always identify data type before analysis</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 5: Measures of Central Tendency -->
            <section class="topic-section" id="topic-5">
                <div class="topic-header">
                    <span class="topic-number">Topic 5</span>
                    <h2>📍 Measures of Central Tendency</h2>
                    <p class="topic-subtitle">Mean, Median, Mode - Finding the center of data</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Measures of central tendency are single values that represent the "center" or "typical" value in a dataset.</p>
                    <p><strong>Why it matters:</strong> Instead of looking at hundreds of numbers, one central value summarizes the data. "Average salary" tells you more than listing every employee's salary.</p>
                    <p><strong>When to use it:</strong> When you need to summarize data with a single representative value.</p>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD ANALOGY</div>
                    <p>Imagine finding the "center" of a group of people standing on a field. Mean is like finding the balance point where they'd balance on a seesaw. Median is literally the middle person. Mode is where the most people are clustered together.</p>
                </div>

                <div class="content-card">
                    <h3>Mathematical Foundations</h3>
                    
                    <div class="formula-card">
                        <div class="formula-header">Mean (Average)</div>
                        <div class="formula-main">
                            <span class="formula-symbol">μ</span> = 
                            <span class="formula-fraction">
                                <span class="formula-numerator">Σx</span>
                                <span class="formula-line"></span>
                                <span class="formula-denominator">n</span>
                            </span>
                        </div>
                        <p><strong>Where:</strong></p>
                        <ul>
                            <li><span class="formula-var">μ</span> (mu) = population mean or <span class="formula-var"></span> (x-bar) = sample mean</li>
                            <li><span class="formula-var">Σx</span> = sum of all values</li>
                            <li><span class="formula-var">n</span> = number of values</li>
                        </ul>
                        <div class="formula-steps">
                            <p><strong>Steps:</strong></p>
                            <ol>
                                <li>Add all values together</li>
                                <li>Divide by the count of values</li>
                            </ol>
                        </div>
                    </div>

                    <div class="formula-card">
                        <div class="formula-header">Median (Middle Value)</div>
                        <div class="formula-main">
                            <p>If <strong>odd</strong> number of values: Middle value</p>
                            <p>If <strong>even</strong> number of values: Average of two middle values</p>
                        </div>
                        <div class="formula-steps">
                            <p><strong>Steps:</strong></p>
                            <ol>
                                <li>Sort values in ascending order</li>
                                <li>Find the middle position: (n + 1) / 2</li>
                                <li>If between two values, average them</li>
                            </ol>
                        </div>
                    </div>

                    <div class="formula-card">
                        <div class="formula-header">Mode (Most Frequent)</div>
                        <div class="formula-main">
                            <p>The value(s) that appear most frequently</p>
                        </div>
                        <div class="formula-steps">
                            <p><strong>Types:</strong></p>
                            <ul>
                                <li><strong>Unimodal:</strong> One mode</li>
                                <li><strong>Bimodal:</strong> Two modes</li>
                                <li><strong>Multimodal:</strong> More than two modes</li>
                                <li><strong>No mode:</strong> All values appear equally</li>
                            </ul>
                        </div>
                    </div>
                </div>

                <div class="interactive-container">
                    <h3>Interactive Calculator</h3>
                    <canvas id="centralTendencyCanvas" width="800" height="300"></canvas>
                    <div class="controls">
                        <div class="input-group">
                            <label>Enter values (comma-separated):</label>
                            <input type="text" id="centralTendencyInput" value="10, 20, 30, 40, 50" class="form-control">
                            <button class="btn btn-primary" id="calculateCentralBtn">Calculate</button>
                            <button class="btn btn-secondary" id="randomDataBtn">Random Data</button>
                        </div>
                        <div class="results" id="centralTendencyResults">
                            <div class="result-item"><span class="result-label">Mean:</span> <span id="meanResult">30</span></div>
                            <div class="result-item"><span class="result-label">Median:</span> <span id="medianResult">30</span></div>
                            <div class="result-item"><span class="result-label">Mode:</span> <span id="modeResult">None</span></div>
                        </div>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 WORKED EXAMPLE</div>
                    <p><strong>Dataset:</strong> Test scores: 65, 70, 75, 80, 85, 90, 95</p>
                    <div class="example-solution">
                        <p><strong>Mean:</strong></p>
                        <p>Sum = 65 + 70 + 75 + 80 + 85 + 90 + 95 = 560</p>
                        <p>Mean = 560 / 7 = <strong>80</strong></p>
                        
                        <p><strong>Median:</strong></p>
                        <p>Already sorted. Middle position = (7 + 1) / 2 = 4th value</p>
                        <p>Median = <strong>80</strong></p>
                        
                        <p><strong>Mode:</strong></p>
                        <p>All values appear once. <strong>No mode</strong></p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>When to Use Which?</h3>
                    <div class="comparison-grid">
                        <div class="comparison-item">
                            <h4 style="color: #64ffda;">Use Mean</h4>
                            <ul>
                                <li>Data is symmetrical</li>
                                <li>No extreme outliers</li>
                                <li>Numerical data</li>
                                <li>Need to use all data points</li>
                            </ul>
                        </div>
                        <div class="comparison-item">
                            <h4 style="color: #ff6b6b;">Use Median</h4>
                            <ul>
                                <li>Data has outliers</li>
                                <li>Data is skewed</li>
                                <li>Ordinal data</li>
                                <li>Need robust measure</li>
                            </ul>
                        </div>
                        <div class="comparison-item">
                            <h4 style="color: #4a90e2;">Use Mode</h4>
                            <ul>
                                <li>Categorical data</li>
                                <li>Finding most common value</li>
                                <li>Discrete data</li>
                                <li>Multiple peaks in data</li>
                            </ul>
                        </div>
                    </div>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISTAKE</div>
                    <p><strong>Mean is affected by outliers!</strong> In salary data like $30K, $35K, $40K, $45K, $500K, the mean is $130K (misleading!). The median of $40K better represents typical salary.</p>
                </div>

                <div class="callout-box tip">
                    <div class="callout-header">✅ PRO TIP</div>
                    <p>For skewed data (like income, house prices), <strong>always report the median</strong> along with the mean. If they're very different, your data has outliers or is skewed!</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li><strong>Mean:</strong> Sum of all values divided by count (affected by outliers)</li>
                        <li><strong>Median:</strong> Middle value when sorted (resistant to outliers)</li>
                        <li><strong>Mode:</strong> Most frequent value (useful for categorical data)</li>
                        <li>Choose the measure that best represents your data type and distribution</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 6: Outliers -->
            <section class="topic-section" id="topic-6">
                <div class="topic-header">
                    <span class="topic-number">Topic 6</span>
                    <h2>⚡ Outliers</h2>
                    <p class="topic-subtitle">Extreme values that don't fit the pattern</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Outliers are data points that are significantly different from other observations in a dataset.</p>
                    <p><strong>Why it matters:</strong> Outliers can indicate data errors, special cases, or important patterns. They can also severely distort statistical analyses.</p>
                    <p><strong>When to use it:</strong> Always check for outliers before analyzing data, especially when calculating means and standard deviations.</p>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>In a salary dataset for entry-level employees: $35K, $38K, $40K, $37K, $250K. The $250K is an outlier—maybe it's a data entry error (someone added an extra zero) or a special case (CEO's child). Either way, it needs investigation!</p>
                </div>

                <div class="content-card">
                    <h3>Detection Methods</h3>
                    <div class="two-column">
                        <div class="column">
                            <h4 style="color: #64ffda;">IQR Method</h4>
                            <p>Most common approach:</p>
                            <ul>
                                <li>Calculate Q1, Q3, and IQR = Q3 - Q1</li>
                                <li>Lower fence = Q1 - 1.5 × IQR</li>
                                <li>Upper fence = Q3 + 1.5 × IQR</li>
                                <li>Outliers fall outside fences</li>
                            </ul>
                        </div>
                        <div class="column">
                            <h4 style="color: #ff6b6b;">Z-Score Method</h4>
                            <p>For normal distributions:</p>
                            <ul>
                                <li>Calculate z-score for each value</li>
                                <li>z = (x - μ) / σ</li>
                                <li>If |z| &gt; 3: definitely outlier</li>
                                <li>If |z| &gt; 2: possible outlier</li>
                            </ul>
                        </div>
                    </div>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISTAKE</div>
                    <p>Never automatically delete outliers! They might be: (1) Valid extreme values, (2) Data entry errors, (3) Important discoveries. Always investigate before removing.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Outliers are extreme values that differ significantly from other data</li>
                        <li>Use IQR method (1.5 × IQR rule) or Z-score method to detect</li>
                        <li>Mean is heavily affected by outliers; median is resistant</li>
                        <li>Always investigate outliers before deciding to keep or remove</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 7: Variance & Standard Deviation -->
            <section class="topic-section" id="topic-7">
                <div class="topic-header">
                    <span class="topic-number">Topic 7</span>
                    <h2>📏 Variance &amp; Standard Deviation</h2>
                    <p class="topic-subtitle">Measuring spread and variability in data</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Variance measures the average squared deviation from the mean. Standard deviation is the square root of variance.</p>
                    <p><strong>Why it matters:</strong> Shows how spread out data is. Low values mean data is clustered; high values mean data is scattered.</p>
                    <p><strong>When to use it:</strong> Whenever you need to understand data variability—in finance (risk), manufacturing (quality control), or research (reliability).</p>
                </div>

                <div class="content-card">
                    <h3>Mathematical Formulas</h3>
                    <div class="formula-card">
                        <div class="formula-header">Population Variance (σ²)</div>
                        <div class="formula-main">σ² = Σ(x - μ)² / N</div>
                        <p>Where N = population size, μ = population mean</p>
                    </div>
                    <div class="formula-card">
                        <div class="formula-header">Sample Variance (s²)</div>
                        <div class="formula-main">s² = Σ(x - x̄)² / (n - 1)</div>
                        <p>Where n = sample size, x̄ = sample mean. We use (n-1) for unbiased estimation.</p>
                    </div>
                    <div class="formula-card">
                        <div class="formula-header">Standard Deviation</div>
                        <div class="formula-main">σ = √(variance)</div>
                        <p>Same units as original data, easier to interpret</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 WORKED EXAMPLE</div>
                    <p><strong>Dataset:</strong> [4, 8, 6, 5, 3, 7]</p>
                    <div class="example-solution">
                        <p><strong>Step 1:</strong> Mean = (4+8+6+5+3+7)/6 = 5.5</p>
                        <p><strong>Step 2:</strong> Deviations: [-1.5, 2.5, 0.5, -0.5, -2.5, 1.5]</p>
                        <p><strong>Step 3:</strong> Squared: [2.25, 6.25, 0.25, 0.25, 6.25, 2.25]</p>
                        <p><strong>Step 4:</strong> Sum = 17.5</p>
                        <p><strong>Step 5:</strong> Variance = 17.5/(6-1) = 3.5</p>
                        <p><strong>Step 6:</strong> Std Dev = √3.5 = 1.87</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Variance measures average squared deviation from mean</li>
                        <li>Standard deviation is square root of variance (same units as data)</li>
                        <li>Use (n-1) for sample variance to avoid bias</li>
                        <li>Higher values = more spread; lower values = more clustered</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 8: Quartiles & Percentiles -->
            <section class="topic-section" id="topic-8">
                <div class="topic-header">
                    <span class="topic-number">Topic 8</span>
                    <h2>🎯 Quartiles &amp; Percentiles</h2>
                    <p class="topic-subtitle">Dividing data into equal parts</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Quartiles divide sorted data into 4 equal parts. Percentiles divide data into 100 equal parts.</p>
                    <p><strong>Why it matters:</strong> Shows relative position in a dataset. "90th percentile" means you scored better than 90% of people.</p>
                </div>

                <div class="content-card">
                    <h3>The Five-Number Summary</h3>
                    <ul>
                        <li><strong>Minimum:</strong> Smallest value</li>
                        <li><strong>Q1 (25th percentile):</strong> 25% of data below this</li>
                        <li><strong>Q2 (50th percentile/Median):</strong> Middle value</li>
                        <li><strong>Q3 (75th percentile):</strong> 75% of data below this</li>
                        <li><strong>Maximum:</strong> Largest value</li>
                    </ul>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>SAT scores: If you score 1350 and that's the 90th percentile, it means you scored higher than 90% of test-takers. Percentiles are perfect for standardized tests!</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Q1 = 25th percentile, Q2 = median, Q3 = 75th percentile</li>
                        <li>Percentiles show relative standing in a dataset</li>
                        <li>Five-number summary: Min, Q1, Q2, Q3, Max</li>
                        <li>Useful for understanding data distribution</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 9: Interquartile Range -->
            <section class="topic-section" id="topic-9">
                <div class="topic-header">
                    <span class="topic-number">Topic 9</span>
                    <h2>📦 Interquartile Range (IQR)</h2>
                    <p class="topic-subtitle">Middle 50% of data and outlier detection</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> IQR = Q3 - Q1. It represents the range of the middle 50% of your data.</p>
                    <p><strong>Why it matters:</strong> IQR is resistant to outliers and is the foundation of the 1.5×IQR rule for outlier detection.</p>
                </div>

                <div class="content-card">
                    <h3>The 1.5 × IQR Rule</h3>
                    <div class="formula-card">
                        <div class="formula-header">Outlier Boundaries</div>
                        <div class="formula-main">
                            Lower Fence = Q1 - 1.5 × IQR<br>
                            Upper Fence = Q3 + 1.5 × IQR
                        </div>
                        <p>Any value outside these fences is considered an outlier</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>IQR = Q3 - Q1 (range of middle 50% of data)</li>
                        <li>Resistant to outliers (unlike standard deviation)</li>
                        <li>1.5×IQR rule: standard method for outlier detection</li>
                        <li>Box plots visualize IQR and outliers</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 10: Skewness -->
            <section class="topic-section" id="topic-10">
                <div class="topic-header">
                    <span class="topic-number">Topic 10</span>
                    <h2>📉 Skewness</h2>
                    <p class="topic-subtitle">Understanding data distribution shape</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Skewness measures the asymmetry of a distribution.</p>
                    <p><strong>Why it matters:</strong> Indicates whether data leans left or right, affecting which statistical methods to use.</p>
                </div>

                <div class="content-card">
                    <h3>Types of Skewness</h3>
                    <div class="comparison-grid">
                        <div class="comparison-item">
                            <h4 style="color: #64ffda;">Negative (Left) Skew</h4>
                            <p>Tail extends to the left</p>
                            <p>Mean &lt; Median &lt; Mode</p>
                            <p>Example: Test scores when most students do well</p>
                        </div>
                        <div class="comparison-item">
                            <h4 style="color: #4a90e2;">Symmetric (No Skew)</h4>
                            <p>Perfectly balanced</p>
                            <p>Mean = Median = Mode</p>
                            <p>Example: Normal distribution</p>
                        </div>
                        <div class="comparison-item">
                            <h4 style="color: #ff6b6b;">Positive (Right) Skew</h4>
                            <p>Tail extends to the right</p>
                            <p>Mode &lt; Median &lt; Mean</p>
                            <p>Example: Income data, house prices</p>
                        </div>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Skewness measures asymmetry in distribution</li>
                        <li>Negative skew: tail to left, Mean &lt; Median</li>
                        <li>Positive skew: tail to right, Mean &gt; Median</li>
                        <li>Symmetric: Mean = Median = Mode</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 11: Covariance -->
            <section class="topic-section" id="topic-11">
                <div class="topic-header">
                    <span class="topic-number">Topic 11</span>
                    <h2>🔗 Covariance</h2>
                    <p class="topic-subtitle">How two variables vary together</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Covariance measures how two variables change together.</p>
                    <p><strong>Why it matters:</strong> Shows if variables have a positive, negative, or no relationship.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Sample Covariance</div>
                        <div class="formula-main">Cov(X,Y) = Σ(xᵢ - x̄)(yᵢ - ȳ) / (n-1)</div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Interpretation</h3>
                    <ul>
                        <li><strong>Positive:</strong> Variables increase together</li>
                        <li><strong>Negative:</strong> One increases as other decreases</li>
                        <li><strong>Zero:</strong> No linear relationship</li>
                        <li><strong>Problem:</strong> Scale-dependent, hard to interpret magnitude</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Covariance measures joint variability of two variables</li>
                        <li>Positive: variables move together; Negative: inverse relationship</li>
                        <li>Scale-dependent (unlike correlation)</li>
                        <li>Foundation for correlation calculation</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 12: Correlation -->
            <section class="topic-section" id="topic-12">
                <div class="topic-header">
                    <span class="topic-number">Topic 12</span>
                    <h2>💞 Correlation</h2>
                    <p class="topic-subtitle">Standardized measure of relationship strength</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Correlation coefficient (r) is a standardized measure of linear relationship between two variables.</p>
                    <p><strong>Why it matters:</strong> Always between -1 and +1, making it easy to interpret strength and direction of relationships.</p>
                </div>

                <div class="content-card">
                    <h3>Pearson Correlation Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Correlation Coefficient (r)</div>
                        <div class="formula-main">r = Cov(X,Y) / (σₓ × σᵧ)</div>
                        <p>Covariance divided by product of standard deviations</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Interpretation Guide</h3>
                    <ul>
                        <li><strong>r = +1:</strong> Perfect positive correlation</li>
                        <li><strong>r = 0.7 to 0.9:</strong> Strong positive</li>
                        <li><strong>r = 0.4 to 0.6:</strong> Moderate positive</li>
                        <li><strong>r = 0.1 to 0.3:</strong> Weak positive</li>
                        <li><strong>r = 0:</strong> No correlation</li>
                        <li><strong>r = -0.1 to -0.3:</strong> Weak negative</li>
                        <li><strong>r = -0.4 to -0.6:</strong> Moderate negative</li>
                        <li><strong>r = -0.7 to -0.9:</strong> Strong negative</li>
                        <li><strong>r = -1:</strong> Perfect negative correlation</li>
                    </ul>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>Study hours vs exam scores typically show r = 0.7 (strong positive). More study hours correlate with higher scores.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>r ranges from -1 to +1</li>
                        <li>Measures strength AND direction of linear relationship</li>
                        <li>Scale-independent (unlike covariance)</li>
                        <li>Only measures LINEAR relationships</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 13: Interpreting Correlation -->
            <section class="topic-section" id="topic-13">
                <div class="topic-header">
                    <span class="topic-number">Topic 13</span>
                    <h2>💪 Interpreting Correlation</h2>
                    <p class="topic-subtitle">Correlation vs causation and common pitfalls</p>
                </div>

                <div class="content-card">
                    <h3>The Golden Rule</h3>
                    <div class="callout-box warning">
                        <div class="callout-header">⚠️ CORRELATION ≠ CAUSATION</div>
                        <p>Just because two variables are correlated does NOT mean one causes the other!</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Common Scenarios</h3>
                    <ul>
                        <li><strong>Direct Causation:</strong> X causes Y (smoking causes cancer)</li>
                        <li><strong>Reverse Causation:</strong> Y causes X (not the direction you thought)</li>
                        <li><strong>Third Variable:</strong> Z causes both X and Y (confounding variable)</li>
                        <li><strong>Coincidence:</strong> Pure chance with no real relationship</li>
                    </ul>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 FAMOUS EXAMPLE</div>
                    <p><strong>Ice cream sales correlate with drowning deaths.</strong></p>
                    <p>Does ice cream cause drowning? NO! The third variable is summer weather—more people swim in summer (more drownings) and eat ice cream in summer.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Correlation shows relationship, NOT causation</li>
                        <li>Always consider third variables (confounders)</li>
                        <li>Need controlled experiments to prove causation</li>
                        <li>Be skeptical of correlation claims in media</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 14: Probability Basics -->
            <section class="topic-section" id="topic-14">
                <div class="topic-header">
                    <span class="topic-number">Topic 14</span>
                    <h2>🎲 Probability Basics</h2>
                    <p class="topic-subtitle">Foundation of statistical inference</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Probability measures the likelihood of an event occurring, ranging from 0 (impossible) to 1 (certain).</p>
                    <p><strong>Why it matters:</strong> Foundation for all statistical inference, hypothesis testing, and prediction.</p>
                </div>

                <div class="content-card">
                    <h3>Basic Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Probability of Event E</div>
                        <div class="formula-main">P(E) = Number of favorable outcomes / Total number of possible outcomes</div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Key Rules</h3>
                    <ul>
                        <li><strong>Range:</strong> 0 ≤ P(E) ≤ 1</li>
                        <li><strong>Complement:</strong> P(not E) = 1 - P(E)</li>
                        <li><strong>Addition (OR):</strong> P(A or B) = P(A) + P(B) - P(A and B)</li>
                        <li><strong>Multiplication (AND):</strong> P(A and B) = P(A) × P(B) [if independent]</li>
                    </ul>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p><strong>Rolling a die:</strong></p>
                    <p>P(rolling a 4) = 1/6 ≈ 0.167</p>
                    <p>P(rolling even) = 3/6 = 0.5</p>
                    <p>P(not rolling a 6) = 5/6 ≈ 0.833</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Probability ranges from 0 to 1</li>
                        <li>P(E) = favorable outcomes / total outcomes</li>
                        <li>Complement rule: P(not E) = 1 - P(E)</li>
                        <li>Foundation for all statistical inference</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 15: Set Theory -->
            <section class="topic-section" id="topic-15">
                <div class="topic-header">
                    <span class="topic-number">Topic 15</span>
                    <h2>🔷 Set Theory</h2>
                    <p class="topic-subtitle">Union, intersection, and complement</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Set theory provides a mathematical framework for organizing events and calculating probabilities.</p>
                </div>

                <div class="content-card">
                    <h3>Key Concepts</h3>
                    <ul>
                        <li><strong>Union (A ∪ B):</strong> A OR B (either event occurs)</li>
                        <li><strong>Intersection (A ∩ B):</strong> A AND B (both events occur)</li>
                        <li><strong>Complement (A'):</strong> NOT A (event doesn't occur)</li>
                        <li><strong>Mutually Exclusive:</strong> A ∩ B = ∅ (can't both occur)</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Union (∪): OR operation</li>
                        <li>Intersection (∩): AND operation</li>
                        <li>Complement ('): NOT operation</li>
                        <li>Venn diagrams visualize set relationships</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 16: Conditional Probability -->
            <section class="topic-section" id="topic-16">
                <div class="topic-header">
                    <span class="topic-number">Topic 16</span>
                    <h2>🔀 Conditional Probability</h2>
                    <p class="topic-subtitle">Probability given that something else happened</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Conditional probability is the probability of event A occurring given that event B has already occurred.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Conditional Probability</div>
                        <div class="formula-main">P(A|B) = P(A and B) / P(B)</div>
                        <p>Read as: "Probability of A given B"</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p>Drawing cards: P(King | Red card) = ?</p>
                    <p>P(Red card) = 26/52</p>
                    <p>P(King and Red) = 2/52</p>
                    <p>P(King | Red) = (2/52) / (26/52) = 2/26 = 1/13</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>P(A|B) = probability of A given B occurred</li>
                        <li>Formula: P(A|B) = P(A and B) / P(B)</li>
                        <li>Critical for Bayes' Theorem</li>
                        <li>Used in machine learning and diagnostics</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 17: Independence -->
            <section class="topic-section" id="topic-17">
                <div class="topic-header">
                    <span class="topic-number">Topic 17</span>
                    <h2>🎯 Independence</h2>
                    <p class="topic-subtitle">When events don't affect each other</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Two events are independent if the occurrence of one doesn't affect the probability of the other.</p>
                </div>

                <div class="content-card">
                    <h3>Test for Independence</h3>
                    <div class="formula-card">
                        <div class="formula-header">Events A and B are independent if:</div>
                        <div class="formula-main">P(A|B) = P(A)</div>
                        <p>OR equivalently:</p>
                        <div class="formula-main">P(A and B) = P(A) × P(B)</div>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Examples</h3>
                    <ul>
                        <li><strong>Independent:</strong> Coin flips, die rolls with replacement</li>
                        <li><strong>Dependent:</strong> Drawing cards without replacement, weather on consecutive days</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Independent events don't affect each other</li>
                        <li>Test: P(A and B) = P(A) × P(B)</li>
                        <li>With replacement → independent</li>
                        <li>Without replacement → dependent</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 18: Bayes' Theorem -->
            <section class="topic-section" id="topic-18">
                <div class="topic-header">
                    <span class="topic-number">Topic 18</span>
                    <h2>🧮 Bayes' Theorem</h2>
                    <p class="topic-subtitle">Updating probabilities with new evidence</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Bayes' Theorem shows how to update probability based on new information.</p>
                    <p><strong>Why it matters:</strong> Used in medical diagnosis, spam filters, machine learning, and countless applications.</p>
                </div>

                <div class="content-card">
                    <h3>The Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Bayes' Theorem</div>
                        <div class="formula-main">P(A|B) = [P(B|A) × P(A)] / P(B)</div>
                        <ul>
                            <li>P(A|B) = posterior probability</li>
                            <li>P(B|A) = likelihood</li>
                            <li>P(A) = prior probability</li>
                            <li>P(B) = marginal probability</li>
                        </ul>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 MEDICAL DIAGNOSIS EXAMPLE</div>
                    <p><strong>Disease affects 1% of population. Test is 95% accurate.</strong></p>
                    <p>You test positive. What's probability you have disease?</p>
                    <div class="example-solution">
                        <p>P(Disease) = 0.01</p>
                        <p>P(Positive|Disease) = 0.95</p>
                        <p>P(Positive|No Disease) = 0.05</p>
                        <p>P(Positive) = 0.01×0.95 + 0.99×0.05 = 0.059</p>
                        <p>P(Disease|Positive) = (0.95×0.01)/0.059 = 0.161</p>
                        <p><strong>Only 16.1% chance you have the disease!</strong></p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Updates probability based on new evidence</li>
                        <li>P(A|B) = [P(B|A) × P(A)] / P(B)</li>
                        <li>Critical for medical testing and machine learning</li>
                        <li>Counter-intuitive results common (base rate matters!)</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 19: PMF -->
            <section class="topic-section" id="topic-19">
                <div class="topic-header">
                    <span class="topic-number">Topic 19</span>
                    <h2>📊 Probability Mass Function (PMF)</h2>
                    <p class="topic-subtitle">Probabilities for discrete random variables</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> PMF gives the probability that a discrete random variable equals a specific value.</p>
                    <p><strong>Why it matters:</strong> Used for countable outcomes like dice rolls, coin flips, or number of defects.</p>
                </div>

                <div class="content-card">
                    <h3>Properties</h3>
                    <ul>
                        <li>0 ≤ P(X = x) ≤ 1 for all x</li>
                        <li>Sum of all probabilities = 1</li>
                        <li>Only defined for discrete variables</li>
                        <li>Visualized with bar charts</li>
                    </ul>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE: Die Roll</div>
                    <p>P(X = 1) = 1/6</p>
                    <p>P(X = 2) = 1/6</p>
                    <p>... and so on</p>
                    <p>Sum = 6 × (1/6) = 1 ✓</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>PMF is for discrete random variables</li>
                        <li>Gives P(X = specific value)</li>
                        <li>All probabilities sum to 1</li>
                        <li>Visualized with bar charts</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 20: PDF -->
            <section class="topic-section" id="topic-20">
                <div class="topic-header">
                    <span class="topic-number">Topic 20</span>
                    <h2>📈 Probability Density Function (PDF)</h2>
                    <p class="topic-subtitle">Probabilities for continuous random variables</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> PDF describes probability for continuous random variables. Probability at exact point is 0; we calculate probability over intervals.</p>
                </div>

                <div class="content-card">
                    <h3>Key Differences from PMF</h3>
                    <ul>
                        <li>For continuous (not discrete) variables</li>
                        <li>P(X = exact value) = 0</li>
                        <li>Calculate P(a &lt; X &lt; b) = area under curve</li>
                        <li>Total area under curve = 1</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>PDF is for continuous random variables</li>
                        <li>Probability = area under curve</li>
                        <li>P(X = exact point) = 0</li>
                        <li>Total area under PDF = 1</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 21: CDF -->
            <section class="topic-section" id="topic-21">
                <div class="topic-header">
                    <span class="topic-number">Topic 21</span>
                    <h2>📉 Cumulative Distribution Function (CDF)</h2>
                    <p class="topic-subtitle">Probability up to a value</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> CDF gives the probability that X is less than or equal to a specific value.</p>
                    <p><strong>Formula:</strong> F(x) = P(X ≤ x)</p>
                </div>

                <div class="content-card">
                    <h3>Properties</h3>
                    <ul>
                        <li>Always non-decreasing</li>
                        <li>F(-∞) = 0</li>
                        <li>F(+∞) = 1</li>
                        <li>P(a &lt; X ≤ b) = F(b) - F(a)</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>CDF: F(x) = P(X ≤ x)</li>
                        <li>Works for both discrete and continuous</li>
                        <li>Always increases from 0 to 1</li>
                        <li>Useful for finding percentiles</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 22: Bernoulli Distribution -->
            <section class="topic-section" id="topic-22">
                <div class="topic-header">
                    <span class="topic-number">Topic 22</span>
                    <h2>🪙 Bernoulli Distribution</h2>
                    <p class="topic-subtitle">Single trial with two outcomes</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Models a single trial with two outcomes: success (1) or failure (0).</p>
                    <p><strong>Examples:</strong> Coin flip, pass/fail test, yes/no question</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Bernoulli PMF</div>
                        <div class="formula-main">P(X = 1) = p</div>
                        <div class="formula-main">P(X = 0) = 1 - p = q</div>
                        <p>Mean = p, Variance = p(1-p)</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Single trial, two outcomes (0 or 1)</li>
                        <li>Parameter: p (probability of success)</li>
                        <li>Mean = p, Variance = p(1-p)</li>
                        <li>Building block for binomial distribution</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 23: Binomial Distribution -->
            <section class="topic-section" id="topic-23">
                <div class="topic-header">
                    <span class="topic-number">Topic 23</span>
                    <h2>🎰 Binomial Distribution</h2>
                    <p class="topic-subtitle">Multiple independent Bernoulli trials</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Models the number of successes in n independent Bernoulli trials.</p>
                    <p><strong>Requirements:</strong> Fixed n, same p, independent trials, binary outcomes</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Binomial PMF</div>
                        <div class="formula-main">P(X = k) = C(n,k) × p^k × (1-p)^(n-k)</div>
                        <p>C(n,k) = n! / (k!(n-k)!)</p>
                        <p>Mean = np, Variance = np(1-p)</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p>Flip coin 10 times. P(exactly 6 heads)?</p>
                    <p>n=10, k=6, p=0.5</p>
                    <p>P(X=6) = C(10,6) × 0.5^6 × 0.5^4 = 210 × 0.000977 ≈ 0.205</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>n independent trials, probability p each</li>
                        <li>Counts number of successes</li>
                        <li>Mean = np, Variance = np(1-p)</li>
                        <li>Common in quality control and surveys</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 24: Normal Distribution -->
            <section class="topic-section" id="topic-24">
                <div class="topic-header">
                    <span class="topic-number">Topic 24</span>
                    <h2>🔔 Normal Distribution</h2>
                    <p class="topic-subtitle">The bell curve and 68-95-99.7 rule</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> The most important continuous probability distribution—symmetric, bell-shaped curve.</p>
                    <p><strong>Why it matters:</strong> Many natural phenomena follow normal distribution. Foundation of inferential statistics.</p>
                </div>

                <div class="content-card">
                    <h3>Properties</h3>
                    <ul>
                        <li>Symmetric around mean μ</li>
                        <li>Bell-shaped curve</li>
                        <li>Mean = Median = Mode</li>
                        <li>Defined by μ (mean) and σ (standard deviation)</li>
                        <li>Total area under curve = 1</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>The 68-95-99.7 Rule (Empirical Rule)</h3>
                    <ul>
                        <li><strong>68%</strong> of data within μ ± 1σ</li>
                        <li><strong>95%</strong> of data within μ ± 2σ</li>
                        <li><strong>99.7%</strong> of data within μ ± 3σ</li>
                    </ul>
                </div>

                <div class="callout-box insight">
                    <div class="callout-header">💡 REAL-WORLD EXAMPLE</div>
                    <p>IQ scores: μ = 100, σ = 15</p>
                    <p>68% of people have IQ between 85-115</p>
                    <p>95% have IQ between 70-130</p>
                    <p>99.7% have IQ between 55-145</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Symmetric bell curve, parameters μ and σ</li>
                        <li>68-95-99.7 rule for standard deviations</li>
                        <li>Foundation for hypothesis testing</li>
                        <li>Central Limit Theorem connects to sampling</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 25: Hypothesis Testing Intro -->
            <section class="topic-section" id="topic-25">
                <div class="topic-header">
                    <span class="topic-number">Topic 25</span>
                    <h2>⚖️ Hypothesis Testing Introduction</h2>
                    <p class="topic-subtitle">Making decisions from data</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Statistical method for testing claims about populations using sample data.</p>
                    <p><strong>Why it matters:</strong> Allows us to make evidence-based decisions and determine if effects are real or due to chance.</p>
                </div>

                <div class="content-card">
                    <h3>The Two Hypotheses</h3>
                    <ul>
                        <li><strong>Null Hypothesis (H₀):</strong> Status quo, no effect, no difference</li>
                        <li><strong>Alternative Hypothesis (H₁ or Hₐ):</strong> What we're trying to prove</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Decision Process</h3>
                    <ol>
                        <li>State hypotheses (H₀ and H₁)</li>
                        <li>Choose significance level (α)</li>
                        <li>Collect data and calculate test statistic</li>
                        <li>Find p-value or critical value</li>
                        <li>Make decision: Reject H₀ or Fail to reject H₀</li>
                    </ol>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p><strong>Claim:</strong> New teaching method improves test scores</p>
                    <p>H₀: μ = 75 (no improvement)</p>
                    <p>H₁: μ &gt; 75 (scores improved)</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>H₀ = null hypothesis (status quo)</li>
                        <li>H₁ = alternative hypothesis (what we test)</li>
                        <li>We either reject or fail to reject H₀</li>
                        <li>Never "accept" or "prove" anything</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 26: Significance Level α -->
            <section class="topic-section" id="topic-26">
                <div class="topic-header">
                    <span class="topic-number">Topic 26</span>
                    <h2>🎯 Significance Level (α)</h2>
                    <p class="topic-subtitle">Setting your error tolerance</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> α (alpha) is the probability of rejecting H₀ when it's actually true (Type I error rate).</p>
                    <p><strong>Common values:</strong> 0.05 (5%), 0.01 (1%), 0.10 (10%)</p>
                </div>

                <div class="content-card">
                    <h3>Interpretation</h3>
                    <ul>
                        <li><strong>α = 0.05:</strong> Willing to be wrong 5% of the time</li>
                        <li><strong>Lower α:</strong> More stringent, harder to reject H₀</li>
                        <li><strong>Higher α:</strong> More lenient, easier to reject H₀</li>
                        <li><strong>Confidence level:</strong> 1 - α (e.g., 0.05 → 95% confidence)</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>α = probability of Type I error</li>
                        <li>Common: α = 0.05 (5% error rate)</li>
                        <li>Set before collecting data</li>
                        <li>Trade-off between Type I and Type II errors</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 27: Standard Error -->
            <section class="topic-section" id="topic-27">
                <div class="topic-header">
                    <span class="topic-number">Topic 27</span>
                    <h2>📊 Standard Error</h2>
                    <p class="topic-subtitle">Measuring sampling variability</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Standard error (SE) measures how much sample means vary from the true population mean.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Standard Error of Mean</div>
                        <div class="formula-main">SE = σ / √n</div>
                        <p>or estimate: SE = s / √n</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Key Points</h3>
                    <ul>
                        <li>Decreases as sample size increases</li>
                        <li>Measures precision of sample mean</li>
                        <li>Lower SE = better estimate</li>
                        <li>Used in confidence intervals and hypothesis tests</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>SE = σ / √n</li>
                        <li>Measures sampling variability</li>
                        <li>Larger samples → smaller SE</li>
                        <li>Critical for inference</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 28: Z-Test -->
            <section class="topic-section" id="topic-28">
                <div class="topic-header">
                    <span class="topic-number">Topic 28</span>
                    <h2>📏 Z-Test</h2>
                    <p class="topic-subtitle">Hypothesis test for large samples with known σ</p>
                </div>

                <div class="content-card">
                    <h3>When to Use Z-Test</h3>
                    <ul>
                        <li>Sample size n ≥ 30 (large sample)</li>
                        <li>Population standard deviation (σ) known</li>
                        <li>Testing population mean</li>
                        <li>Normal distribution or large n</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Z-Test Statistic</div>
                        <div class="formula-main">z = (x̄ - μ₀) / (σ / √n)</div>
                        <p>x̄ = sample mean</p>
                        <p>μ₀ = hypothesized population mean</p>
                        <p>σ = population standard deviation</p>
                        <p>n = sample size</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Use when n ≥ 30 and σ known</li>
                        <li>z = (x̄ - μ₀) / SE</li>
                        <li>Compare z to critical value or find p-value</li>
                        <li>Large |z| = evidence against H₀</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 29: Z-Score & Critical Values -->
            <section class="topic-section" id="topic-29">
                <div class="topic-header">
                    <span class="topic-number">Topic 29</span>
                    <h2>🎚️ Z-Score &amp; Critical Values</h2>
                    <p class="topic-subtitle">Standardization and rejection regions</p>
                </div>

                <div class="content-card">
                    <h3>Z-Score (Standardization)</h3>
                    <div class="formula-card">
                        <div class="formula-header">Z-Score Formula</div>
                        <div class="formula-main">z = (x - μ) / σ</div>
                        <p>Converts any normal distribution to standard normal (μ=0, σ=1)</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Critical Values</h3>
                    <ul>
                        <li><strong>α = 0.05 (two-tailed):</strong> z = ±1.96</li>
                        <li><strong>α = 0.05 (one-tailed):</strong> z = 1.645</li>
                        <li><strong>α = 0.01 (two-tailed):</strong> z = ±2.576</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Z-score standardizes values</li>
                        <li>Critical values define rejection region</li>
                        <li>|z| &gt; critical value → reject H₀</li>
                        <li>Common: ±1.96 for 95% confidence</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 30: P-Value -->
            <section class="topic-section" id="topic-30">
                <div class="topic-header">
                    <span class="topic-number">Topic 30</span>
                    <h2>💯 P-Value Method</h2>
                    <p class="topic-subtitle">Probability of observing data if H₀ is true</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> P-value is the probability of getting results as extreme as observed, assuming H₀ is true.</p>
                </div>

                <div class="content-card">
                    <h3>Decision Rule</h3>
                    <ul>
                        <li><strong>If p-value ≤ α:</strong> Reject H₀ (statistically significant)</li>
                        <li><strong>If p-value &gt; α:</strong> Fail to reject H₀ (not significant)</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Interpretation</h3>
                    <ul>
                        <li><strong>p &lt; 0.01:</strong> Very strong evidence against H₀</li>
                        <li><strong>0.01 ≤ p &lt; 0.05:</strong> Strong evidence against H₀</li>
                        <li><strong>0.05 ≤ p &lt; 0.10:</strong> Weak evidence against H₀</li>
                        <li><strong>p ≥ 0.10:</strong> Little or no evidence against H₀</li>
                    </ul>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISCONCEPTION</div>
                    <p>P-value is NOT the probability that H₀ is true! It's the probability of observing your data IF H₀ were true.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>P-value = P(data | H₀ true)</li>
                        <li>Reject H₀ if p ≤ α</li>
                        <li>Smaller p-value = stronger evidence against H₀</li>
                        <li>Most common approach in modern statistics</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 31: One vs Two Tailed -->
            <section class="topic-section" id="topic-31">
                <div class="topic-header">
                    <span class="topic-number">Topic 31</span>
                    <h2>↔️ One-Tailed vs Two-Tailed Tests</h2>
                    <p class="topic-subtitle">Directional vs non-directional hypotheses</p>
                </div>

                <div class="content-card">
                    <h3>Two-Tailed Test</h3>
                    <ul>
                        <li><strong>H₁:</strong> μ ≠ μ₀ (different, could be higher or lower)</li>
                        <li>Testing for any difference</li>
                        <li>Rejection regions in both tails</li>
                        <li>More conservative</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>One-Tailed Test</h3>
                    <ul>
                        <li><strong>Right-tailed:</strong> H₁: μ &gt; μ₀</li>
                        <li><strong>Left-tailed:</strong> H₁: μ &lt; μ₀</li>
                        <li>Testing for specific direction</li>
                        <li>Rejection region in one tail</li>
                        <li>More powerful for directional effects</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Two-tailed: testing for any difference</li>
                        <li>One-tailed: testing for specific direction</li>
                        <li>Choose before collecting data</li>
                        <li>Two-tailed is more conservative</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 32: T-Test -->
            <section class="topic-section" id="topic-32">
                <div class="topic-header">
                    <span class="topic-number">Topic 32</span>
                    <h2>📐 T-Test</h2>
                    <p class="topic-subtitle">Hypothesis test for small samples or unknown σ</p>
                </div>

                <div class="content-card">
                    <h3>When to Use T-Test</h3>
                    <ul>
                        <li>Small sample (n &lt; 30)</li>
                        <li>Population σ unknown (use sample s)</li>
                        <li>Population approximately normal</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">T-Test Statistic</div>
                        <div class="formula-main">t = (x̄ - μ₀) / (s / √n)</div>
                        <p>Same as z-test but uses s instead of σ</p>
                        <p>Follows t-distribution with df = n - 1</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Use when σ unknown or n &lt; 30</li>
                        <li>t = (x̄ - μ₀) / (s / √n)</li>
                        <li>Follows t-distribution</li>
                        <li>More variable than z-distribution</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 33: Degrees of Freedom -->
            <section class="topic-section" id="topic-33">
                <div class="topic-header">
                    <span class="topic-number">Topic 33</span>
                    <h2>🔓 Degrees of Freedom</h2>
                    <p class="topic-subtitle">Independent pieces of information</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Degrees of freedom (df) is the number of independent values that can vary in analysis.</p>
                </div>

                <div class="content-card">
                    <h3>Common Formulas</h3>
                    <ul>
                        <li><strong>One-sample t-test:</strong> df = n - 1</li>
                        <li><strong>Two-sample t-test:</strong> df ≈ n₁ + n₂ - 2</li>
                        <li><strong>Chi-squared:</strong> df = (rows-1)(cols-1)</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Why It Matters</h3>
                    <ul>
                        <li>Determines shape of t-distribution</li>
                        <li>Higher df → closer to normal distribution</li>
                        <li>Affects critical values</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>df = number of independent values</li>
                        <li>For t-test: df = n - 1</li>
                        <li>Higher df → distribution closer to normal</li>
                        <li>Critical for finding correct critical values</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 34: Type I & II Errors -->
            <section class="topic-section" id="topic-34">
                <div class="topic-header">
                    <span class="topic-number">Topic 34</span>
                    <h2>⚠️ Type I &amp; Type II Errors</h2>
                    <p class="topic-subtitle">False positives and false negatives</p>
                </div>

                <div class="content-card">
                    <h3>The Two Types of Errors</h3>
                    <table class="comparison-table">
                        <thead>
                            <tr>
                                <th></th>
                                <th>H₀ True</th>
                                <th>H₀ False</th>
                            </tr>
                        </thead>
                        <tbody>
                            <tr>
                                <td><strong>Reject H₀</strong></td>
                                <td style="color: #ff6b6b;">Type I Error (α)</td>
                                <td style="color: #51cf66;">Correct!</td>
                            </tr>
                            <tr>
                                <td><strong>Fail to Reject H₀</strong></td>
                                <td style="color: #51cf66;">Correct!</td>
                                <td style="color: #ff6b6b;">Type II Error (β)</td>
                            </tr>
                        </tbody>
                    </table>
                </div>

                <div class="content-card">
                    <h3>Definitions</h3>
                    <ul>
                        <li><strong>Type I Error (α):</strong> Rejecting true H₀ (false positive)</li>
                        <li><strong>Type II Error (β):</strong> Failing to reject false H₀ (false negative)</li>
                        <li><strong>Power = 1 - β:</strong> Probability of correctly rejecting false H₀</li>
                    </ul>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 MEDICAL ANALOGY</div>
                    <p><strong>Type I Error:</strong> Telling healthy person they're sick (false alarm)</p>
                    <p><strong>Type II Error:</strong> Telling sick person they're healthy (missed diagnosis)</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Type I: False positive (α)</li>
                        <li>Type II: False negative (β)</li>
                        <li>Trade-off: decreasing one increases the other</li>
                        <li>Power = 1 - β (ability to detect true effect)</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 35: Chi-Squared Distribution -->
            <section class="topic-section" id="topic-35">
                <div class="topic-header">
                    <span class="topic-number">Topic 35</span>
                    <h2>χ² Chi-Squared Distribution</h2>
                    <p class="topic-subtitle">Distribution for categorical data analysis</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Chi-squared (χ²) distribution is used for testing hypotheses about categorical data.</p>
                </div>

                <div class="content-card">
                    <h3>Properties</h3>
                    <ul>
                        <li>Always positive (ranges from 0 to ∞)</li>
                        <li>Right-skewed</li>
                        <li>Shape depends on degrees of freedom</li>
                        <li>Higher df → more symmetric</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Uses</h3>
                    <ul>
                        <li>Goodness of fit test</li>
                        <li>Test of independence</li>
                        <li>Testing variance</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Used for categorical data</li>
                        <li>Always positive, right-skewed</li>
                        <li>Shape depends on df</li>
                        <li>Foundation for chi-squared tests</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 36: Goodness of Fit -->
            <section class="topic-section" id="topic-36">
                <div class="topic-header">
                    <span class="topic-number">Topic 36</span>
                    <h2>✓ Goodness of Fit Test</h2>
                    <p class="topic-subtitle">Testing if data follows expected distribution</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Tests whether observed frequencies match expected frequencies from a theoretical distribution.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Chi-Squared Test Statistic</div>
                        <div class="formula-main">χ² = Σ [(O - E)² / E]</div>
                        <p>O = observed frequency</p>
                        <p>E = expected frequency</p>
                        <p>df = k - 1 (k = number of categories)</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p><strong>Testing if die is fair:</strong></p>
                    <p>Roll 60 times. Expected: 10 per face</p>
                    <p>Observed: 8, 12, 11, 9, 10, 10</p>
                    <p>Calculate χ² and compare to critical value</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Tests if observed matches expected distribution</li>
                        <li>χ² = Σ(O-E)²/E</li>
                        <li>Large χ² = poor fit</li>
                        <li>df = number of categories - 1</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 37: Test of Independence -->
            <section class="topic-section" id="topic-37">
                <div class="topic-header">
                    <span class="topic-number">Topic 37</span>
                    <h2>🔗 Test of Independence</h2>
                    <p class="topic-subtitle">Testing relationship between categorical variables</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Tests whether two categorical variables are independent or associated.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Chi-Squared for Independence</div>
                        <div class="formula-main">χ² = Σ [(O - E)² / E]</div>
                        <p>E = (row total × column total) / grand total</p>
                        <p>df = (rows - 1)(columns - 1)</p>
                    </div>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p><strong>Are gender and color preference independent?</strong></p>
                    <p>Create contingency table, calculate expected frequencies, compute χ², and test against critical value.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Tests independence of two categorical variables</li>
                        <li>Uses contingency tables</li>
                        <li>df = (r-1)(c-1)</li>
                        <li>Large χ² suggests association</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 38: Chi-Squared for Variance -->
            <section class="topic-section" id="topic-38">
                <div class="topic-header">
                    <span class="topic-number">Topic 38</span>
                    <h2>📏 Chi-Squared Variance Test</h2>
                    <p class="topic-subtitle">Testing claims about population variance</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Tests hypotheses about population variance or standard deviation.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Chi-Squared for Variance</div>
                        <div class="formula-main">χ² = (n-1)s² / σ₀²</div>
                        <p>n = sample size</p>
                        <p>s² = sample variance</p>
                        <p>σ₀² = hypothesized population variance</p>
                        <p>df = n - 1</p>
                    </div>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Tests claims about variance/standard deviation</li>
                        <li>χ² = (n-1)s²/σ₀²</li>
                        <li>Requires normal population</li>
                        <li>Common in quality control</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 39: Confidence Intervals -->
            <section class="topic-section" id="topic-39">
                <div class="topic-header">
                    <span class="topic-number">Topic 39</span>
                    <h2>📊 Confidence Intervals</h2>
                    <p class="topic-subtitle">Range of plausible values for parameter</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> A confidence interval provides a range of values that likely contains the true population parameter.</p>
                    <p><strong>Why it matters:</strong> More informative than point estimates—shows precision and uncertainty.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Confidence Interval for Mean</div>
                        <div class="formula-main">CI = x̄ ± (critical value × SE)</div>
                        <p>For z: CI = x̄ ± z* × (σ/√n)</p>
                        <p>For t: CI = x̄ ± t* × (s/√n)</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Common Confidence Levels</h3>
                    <ul>
                        <li><strong>90% CI:</strong> z* = 1.645</li>
                        <li><strong>95% CI:</strong> z* = 1.96</li>
                        <li><strong>99% CI:</strong> z* = 2.576</li>
                    </ul>
                </div>

                <div class="callout-box example">
                    <div class="callout-header">📊 EXAMPLE</div>
                    <p>Sample: n=100, x̄=50, s=10</p>
                    <p>95% CI = 50 ± 1.96(10/√100)</p>
                    <p>95% CI = 50 ± 1.96 = (48.04, 51.96)</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>CI = point estimate ± margin of error</li>
                        <li>95% CI most common</li>
                        <li>Wider CI = more uncertainty</li>
                        <li>Larger sample = narrower CI</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 40: Margin of Error -->
            <section class="topic-section" id="topic-40">
                <div class="topic-header">
                    <span class="topic-number">Topic 40</span>
                    <h2>± Margin of Error</h2>
                    <p class="topic-subtitle">Measuring estimate precision</p>
                </div>

                <div class="content-card">
                    <h3>Introduction</h3>
                    <p><strong>What is it?</strong> Margin of error (MOE) is the ± part of a confidence interval, showing the precision of an estimate.</p>
                </div>

                <div class="content-card">
                    <h3>Formula</h3>
                    <div class="formula-card">
                        <div class="formula-header">Margin of Error</div>
                        <div class="formula-main">MOE = (critical value) × SE</div>
                        <p>MOE = z* × (σ/√n) or t* × (s/√n)</p>
                    </div>
                </div>

                <div class="content-card">
                    <h3>Factors Affecting MOE</h3>
                    <ul>
                        <li><strong>Sample size:</strong> Larger n → smaller MOE</li>
                        <li><strong>Confidence level:</strong> Higher confidence → larger MOE</li>
                        <li><strong>Variability:</strong> Higher σ → larger MOE</li>
                    </ul>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>MOE = critical value × SE</li>
                        <li>Indicates precision of estimate</li>
                        <li>Inversely related to sample size</li>
                        <li>Trade-off between confidence and precision</li>
                    </ul>
                </div>
            </section>

            <!-- Topic 41: Interpreting CIs -->
            <section class="topic-section" id="topic-41">
                <div class="topic-header">
                    <span class="topic-number">Topic 41</span>
                    <h2>🔍 Interpreting Confidence Intervals</h2>
                    <p class="topic-subtitle">Common misconceptions and proper interpretation</p>
                </div>

                <div class="content-card">
                    <h3>Correct Interpretation</h3>
                    <p><strong>"We are 95% confident that the true population parameter lies within this interval."</strong></p>
                    <p>This means: If we repeated this process many times, 95% of the intervals would contain the true parameter.</p>
                </div>

                <div class="callout-box warning">
                    <div class="callout-header">⚠️ COMMON MISCONCEPTIONS</div>
                    <ul>
                        <li><strong>WRONG:</strong> "There's a 95% probability the parameter is in this interval."</li>
                        <li><strong>WRONG:</strong> "95% of the data falls in this interval."</li>
                        <li><strong>WRONG:</strong> "We are 95% sure our sample mean is in this interval."</li>
                    </ul>
                </div>

                <div class="content-card">
                    <h3>Using CIs for Hypothesis Testing</h3>
                    <ul>
                        <li>If hypothesized value is INSIDE CI → fail to reject H₀</li>
                        <li>If hypothesized value is OUTSIDE CI → reject H₀</li>
                        <li>95% CI corresponds to α = 0.05 test</li>
                    </ul>
                </div>

                <div class="callout-box tip">
                    <div class="callout-header">✅ PRO TIP</div>
                    <p>Report confidence intervals instead of just p-values! CIs provide more information: effect size AND statistical significance.</p>
                </div>

                <div class="summary-card">
                    <h3>🎯 Key Takeaways</h3>
                    <ul>
                        <li>Correct interpretation: confidence in the method, not the specific interval</li>
                        <li>95% refers to long-run success rate</li>
                        <li>Can use CIs for hypothesis testing</li>
                        <li>More informative than p-values alone</li>
                    </ul>
                </div>
            </section>

        </main>
    </div>

    <script src="app.js"></script>
</body>
</html>