Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import os | |
| import torch | |
| from modules.Attention import Attention | |
| from modules.Device import Device | |
| from modules.SD15 import SDClip, SDToken | |
| from modules.cond import cast | |
| from transformers import T5TokenizerFast | |
| activations = { | |
| "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"), | |
| "relu": torch.nn.functional.relu, | |
| } | |
| class T5DenseGatedActDense(torch.nn.Module): | |
| """#### Dense Gated Activation Layer""" | |
| def __init__(self, model_dim: int, ff_dim: int, ff_activation: str, dtype: torch.dtype, device: torch.device, operations): | |
| """#### Initialize Dense Gated Activation Layer | |
| #### Args: | |
| - `model_dim` (int): Model dimension. | |
| - `ff_dim` (int): Feedforward dimension. | |
| - `ff_activation` (str): Feedforward activation function. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| self.wi_0 = operations.Linear( | |
| model_dim, ff_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.wi_1 = operations.Linear( | |
| model_dim, ff_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.wo = operations.Linear( | |
| ff_dim, model_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| # self.dropout = nn.Dropout(config.dropout_rate) | |
| self.act = activations[ff_activation] | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| hidden_gelu = self.act(self.wi_0(x)) | |
| hidden_linear = self.wi_1(x) | |
| x = hidden_gelu * hidden_linear | |
| # x = self.dropout(x) | |
| x = self.wo(x) | |
| return x | |
| class T5LayerFF(torch.nn.Module): | |
| """#### Feedforward Layer""" | |
| def __init__( | |
| self, model_dim: int, ff_dim: int, ff_activation: str, gated_act: bool, dtype: torch.dtype, device: torch.device, operations | |
| ): | |
| """#### Initialize Feedforward Layer | |
| #### Args: | |
| - `model_dim` (int): Model dimension. | |
| - `ff_dim` (int): Feedforward dimension. | |
| - `ff_activation` (str): Feedforward activation function. | |
| - `gated_act` (bool): Whether to use gated activation. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| if gated_act: | |
| self.DenseReluDense = T5DenseGatedActDense( | |
| model_dim, ff_dim, ff_activation, dtype, device, operations | |
| ) | |
| self.layer_norm = T5LayerNorm( | |
| model_dim, dtype=dtype, device=device, operations=operations | |
| ) | |
| # self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| forwarded_states = self.layer_norm(x) | |
| forwarded_states = self.DenseReluDense(forwarded_states) | |
| # x = x + self.dropout(forwarded_states) | |
| x += forwarded_states | |
| return x | |
| class T5Attention(torch.nn.Module): | |
| """#### Attention Layer""" | |
| def __init__( | |
| self, | |
| model_dim: int, | |
| inner_dim: int, | |
| num_heads: int, | |
| relative_attention_bias: bool, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| operations, | |
| ): | |
| """#### Initialize Attention Layer | |
| #### Args: | |
| - `model_dim` (int): Model dimension. | |
| - `inner_dim` (int): Inner dimension. | |
| - `num_heads` (int): Number of attention heads. | |
| - `relative_attention_bias` (bool): Whether to use relative attention bias. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| # Mesh TensorFlow initialization to avoid scaling before softmax | |
| self.q = operations.Linear( | |
| model_dim, inner_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.k = operations.Linear( | |
| model_dim, inner_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.v = operations.Linear( | |
| model_dim, inner_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.o = operations.Linear( | |
| inner_dim, model_dim, bias=False, dtype=dtype, device=device | |
| ) | |
| self.num_heads = num_heads | |
| self.relative_attention_bias = None | |
| if relative_attention_bias: | |
| self.relative_attention_num_buckets = 32 | |
| self.relative_attention_max_distance = 128 | |
| self.relative_attention_bias = operations.Embedding( | |
| self.relative_attention_num_buckets, | |
| self.num_heads, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| def _relative_position_bucket( | |
| relative_position: torch.Tensor, bidirectional: bool = True, num_buckets: int = 32, max_distance: int = 128 | |
| ) -> torch.Tensor: | |
| """ | |
| Adapted from Mesh Tensorflow: | |
| https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
| Translate relative position to a bucket number for relative attention. The relative position is defined as | |
| memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
| position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
| small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
| positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
| This should allow for more graceful generalization to longer sequences than the model has been trained on | |
| #### Args: | |
| - `relative_position` (torch.Tensor): Relative position tensor. | |
| - `bidirectional` (bool): Whether the attention is bidirectional. | |
| - `num_buckets` (int): Number of buckets. | |
| - `max_distance` (int): Maximum distance. | |
| #### Returns: | |
| - `torch.Tensor`: Bucketed relative positions. | |
| """ | |
| relative_buckets = 0 | |
| if bidirectional: | |
| num_buckets //= 2 | |
| relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
| relative_position = torch.abs(relative_position) | |
| else: | |
| relative_position = -torch.min( | |
| relative_position, torch.zeros_like(relative_position) | |
| ) | |
| # now relative_position is in the range [0, inf) | |
| # half of the buckets are for exact increments in positions | |
| max_exact = num_buckets // 2 | |
| is_small = relative_position < max_exact | |
| # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
| relative_position_if_large = max_exact + ( | |
| torch.log(relative_position.float() / max_exact) | |
| / math.log(max_distance / max_exact) | |
| * (num_buckets - max_exact) | |
| ).to(torch.long) | |
| relative_position_if_large = torch.min( | |
| relative_position_if_large, | |
| torch.full_like(relative_position_if_large, num_buckets - 1), | |
| ) | |
| relative_buckets += torch.where( | |
| is_small, relative_position, relative_position_if_large | |
| ) | |
| return relative_buckets | |
| def compute_bias(self, query_length: int, key_length: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor: | |
| """#### Compute binned relative position bias | |
| #### Args: | |
| - `query_length` (int): Length of the query. | |
| - `key_length` (int): Length of the key. | |
| - `device` (torch.device): Device. | |
| - `dtype` (torch.dtype): Data type. | |
| #### Returns: | |
| - `torch.Tensor`: Computed bias. | |
| """ | |
| context_position = torch.arange(query_length, dtype=torch.long, device=device)[ | |
| :, None | |
| ] | |
| memory_position = torch.arange(key_length, dtype=torch.long, device=device)[ | |
| None, : | |
| ] | |
| relative_position = ( | |
| memory_position - context_position | |
| ) # shape (query_length, key_length) | |
| relative_position_bucket = self._relative_position_bucket( | |
| relative_position, # shape (query_length, key_length) | |
| bidirectional=True, | |
| num_buckets=self.relative_attention_num_buckets, | |
| max_distance=self.relative_attention_max_distance, | |
| ) | |
| values = self.relative_attention_bias( | |
| relative_position_bucket, out_dtype=dtype | |
| ) # shape (query_length, key_length, num_heads) | |
| values = values.permute([2, 0, 1]).unsqueeze( | |
| 0 | |
| ) # shape (1, num_heads, query_length, key_length) | |
| return values | |
| def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| - `mask` (torch.Tensor, optional): Attention mask. Defaults to None. | |
| - `past_bias` (torch.Tensor, optional): Past bias. Defaults to None. | |
| - `optimized_attention` (callable, optional): Optimized attention function. Defaults to None. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| q = self.q(x) | |
| k = self.k(x) | |
| v = self.v(x) | |
| if self.relative_attention_bias is not None: | |
| past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype) | |
| if past_bias is not None: | |
| if mask is not None: | |
| mask = mask + past_bias | |
| else: | |
| mask = past_bias | |
| out = optimized_attention( | |
| q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask | |
| ) | |
| return self.o(out), past_bias | |
| class T5LayerSelfAttention(torch.nn.Module): | |
| """#### Self-Attention Layer""" | |
| def __init__( | |
| self, | |
| model_dim: int, | |
| inner_dim: int, | |
| ff_dim: int, | |
| num_heads: int, | |
| relative_attention_bias: bool, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| operations, | |
| ): | |
| """#### Initialize Self-Attention Layer | |
| #### Args: | |
| - `model_dim` (int): Model dimension. | |
| - `inner_dim` (int): Inner dimension. | |
| - `ff_dim` (int): Feedforward dimension. | |
| - `num_heads` (int): Number of attention heads. | |
| - `relative_attention_bias` (bool): Whether to use relative attention bias. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| self.SelfAttention = T5Attention( | |
| model_dim, | |
| inner_dim, | |
| num_heads, | |
| relative_attention_bias, | |
| dtype, | |
| device, | |
| operations, | |
| ) | |
| self.layer_norm = T5LayerNorm( | |
| model_dim, dtype=dtype, device=device, operations=operations | |
| ) | |
| # self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| - `mask` (torch.Tensor, optional): Attention mask. Defaults to None. | |
| - `past_bias` (torch.Tensor, optional): Past bias. Defaults to None. | |
| - `optimized_attention` (callable, optional): Optimized attention function. Defaults to None. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| self.layer_norm(x) | |
| output, past_bias = self.SelfAttention( | |
| self.layer_norm(x), | |
| mask=mask, | |
| past_bias=past_bias, | |
| optimized_attention=optimized_attention, | |
| ) | |
| # x = x + self.dropout(attention_output) | |
| x += output | |
| return x, past_bias | |
| class T5Block(torch.nn.Module): | |
| """#### T5 Block""" | |
| def __init__( | |
| self, | |
| model_dim: int, | |
| inner_dim: int, | |
| ff_dim: int, | |
| ff_activation: str, | |
| gated_act: bool, | |
| num_heads: int, | |
| relative_attention_bias: bool, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| operations, | |
| ): | |
| """#### Initialize T5 Block | |
| #### Args: | |
| - `model_dim` (int): Model dimension. | |
| - `inner_dim` (int): Inner dimension. | |
| - `ff_dim` (int): Feedforward dimension. | |
| - `ff_activation` (str): Feedforward activation function. | |
| - `gated_act` (bool): Whether to use gated activation. | |
| - `num_heads` (int): Number of attention heads. | |
| - `relative_attention_bias` (bool): Whether to use relative attention bias. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| self.layer = torch.nn.ModuleList() | |
| self.layer.append( | |
| T5LayerSelfAttention( | |
| model_dim, | |
| inner_dim, | |
| ff_dim, | |
| num_heads, | |
| relative_attention_bias, | |
| dtype, | |
| device, | |
| operations, | |
| ) | |
| ) | |
| self.layer.append( | |
| T5LayerFF( | |
| model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations | |
| ) | |
| ) | |
| def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| - `mask` (torch.Tensor, optional): Attention mask. Defaults to None. | |
| - `past_bias` (torch.Tensor, optional): Past bias. Defaults to None. | |
| - `optimized_attention` (callable, optional): Optimized attention function. Defaults to None. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention) | |
| x = self.layer[-1](x) | |
| return x, past_bias | |
| class T5Stack(torch.nn.Module): | |
| """#### T5 Stack""" | |
| def __init__( | |
| self, | |
| num_layers: int, | |
| model_dim: int, | |
| inner_dim: int, | |
| ff_dim: int, | |
| ff_activation: str, | |
| gated_act: bool, | |
| num_heads: int, | |
| relative_attention: bool, | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| operations, | |
| ): | |
| """#### Initialize T5 Stack | |
| #### Args: | |
| - `num_layers` (int): Number of layers. | |
| - `model_dim` (int): Model dimension. | |
| - `inner_dim` (int): Inner dimension. | |
| - `ff_dim` (int): Feedforward dimension. | |
| - `ff_activation` (str): Feedforward activation function. | |
| - `gated_act` (bool): Whether to use gated activation. | |
| - `num_heads` (int): Number of attention heads. | |
| - `relative_attention` (bool): Whether to use relative attention. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| self.block = torch.nn.ModuleList( | |
| [ | |
| T5Block( | |
| model_dim, | |
| inner_dim, | |
| ff_dim, | |
| ff_activation, | |
| gated_act, | |
| num_heads, | |
| relative_attention_bias=((not relative_attention) or (i == 0)), | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| for i in range(num_layers) | |
| ] | |
| ) | |
| self.final_layer_norm = T5LayerNorm( | |
| model_dim, dtype=dtype, device=device, operations=operations | |
| ) | |
| # self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| attention_mask: torch.Tensor = None, | |
| intermediate_output: int = None, | |
| final_layer_norm_intermediate: bool = True, | |
| dtype: torch.dtype = None, | |
| ) -> torch.Tensor: | |
| """#### Forward Pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| - `attention_mask` (torch.Tensor, optional): Attention mask. Defaults to None. | |
| - `intermediate_output` (int, optional): Intermediate output index. Defaults to None. | |
| - `final_layer_norm_intermediate` (bool, optional): Whether to apply final layer norm to intermediate output. Defaults to True. | |
| - `dtype` (torch.dtype, optional): Data type. Defaults to None. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| mask = None | |
| if attention_mask is not None: | |
| mask = 1.0 - attention_mask.to(x.dtype).reshape( | |
| (attention_mask.shape[0], 1, -1, attention_mask.shape[-1]) | |
| ).expand( | |
| attention_mask.shape[0], | |
| 1, | |
| attention_mask.shape[-1], | |
| attention_mask.shape[-1], | |
| ) | |
| mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) | |
| intermediate = None | |
| optimized_attention = Attention.optimized_attention_for_device() | |
| past_bias = None | |
| for i, l in enumerate(self.block): | |
| x, past_bias = l(x, mask, past_bias, optimized_attention) | |
| if i == intermediate_output: | |
| intermediate = x.clone() | |
| x = self.final_layer_norm(x) | |
| if intermediate is not None and final_layer_norm_intermediate: | |
| intermediate = self.final_layer_norm(intermediate) | |
| return x, intermediate | |
| class T5(torch.nn.Module): | |
| def __init__(self, config_dict, dtype, device, operations): | |
| """#### Initialize T5 Model | |
| #### Args: | |
| - `config_dict` (dict): Configuration dictionary. | |
| - `dtype` (torch.dtype): Data type. | |
| - `device` (torch.device): Device. | |
| - `operations` (Operations): Operations. | |
| """ | |
| super().__init__() | |
| self.num_layers = config_dict["num_layers"] | |
| model_dim = config_dict["d_model"] | |
| self.encoder = T5Stack( | |
| self.num_layers, | |
| model_dim, | |
| model_dim, | |
| config_dict["d_ff"], | |
| config_dict["dense_act_fn"], | |
| config_dict["is_gated_act"], | |
| config_dict["num_heads"], | |
| config_dict["model_type"] != "umt5", | |
| dtype, | |
| device, | |
| operations, | |
| ) | |
| self.dtype = dtype | |
| self.shared = operations.Embedding( | |
| config_dict["vocab_size"], model_dim, device=device, dtype=dtype | |
| ) | |
| def get_input_embeddings(self) -> torch.nn.Embedding: | |
| """#### Get input embeddings | |
| #### Returns: | |
| - `torch.nn.Embedding`: The input embeddings. | |
| """ | |
| return self.shared | |
| def set_input_embeddings(self, embeddings: torch.nn.Embedding) -> None: | |
| """#### Set input embeddings | |
| #### Args: | |
| - `embeddings` (torch.nn.Embedding): The input embeddings. | |
| """ | |
| self.shared = embeddings | |
| def forward(self, input_ids: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
| """#### Forward pass | |
| #### Args: | |
| - `input_ids` (torch.Tensor): Input tensor. | |
| - `*args`: Additional arguments. | |
| - `**kwargs`: Additional keyword arguments. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32)) | |
| if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]: | |
| x = torch.nan_to_num(x) # Fix for fp8 T5 base | |
| return self.encoder(x, *args, **kwargs) | |
| class T5XXLModel(SDClip.SDClipModel): | |
| def __init__( | |
| self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={} | |
| ): | |
| """#### Initialize T5XXL Model | |
| #### Args: | |
| - `device` (str, optional): Device. Defaults to "cpu". | |
| - `layer` (str, optional): Layer. Defaults to "last". | |
| - `layer_idx` (int, optional): Layer index. Defaults to None. | |
| - `dtype` (torch.dtype, optional): Data type. Defaults to None. | |
| - `model_options` (dict, optional): Model options. Defaults to {}. | |
| """ | |
| textmodel_json_config = os.path.join( | |
| os.path.dirname(os.path.realpath(__file__)), | |
| "./clip/t5_config_xxl.json", | |
| ) | |
| super().__init__( | |
| device=device, | |
| layer=layer, | |
| layer_idx=layer_idx, | |
| textmodel_json_config=textmodel_json_config, | |
| dtype=dtype, | |
| special_tokens={"end": 1, "pad": 0}, | |
| model_class=T5, | |
| model_options=model_options, | |
| ) | |
| class T5XXLTokenizer(SDToken.SDTokenizer): | |
| def __init__(self, embedding_directory=None, tokenizer_data={}): | |
| """#### Initialize T5XXL Tokenizer | |
| #### Args: | |
| - `embedding_directory` (str, optional): Embedding directory. Defaults to None. | |
| - `tokenizer_data` (dict, optional): Tokenizer data. Defaults to {}. | |
| """ | |
| tokenizer_path = os.path.join( | |
| os.path.dirname(os.path.realpath(__file__)), "./clip/t5_tokenizer" | |
| ) | |
| super().__init__( | |
| tokenizer_path, | |
| pad_with_end=False, | |
| embedding_size=4096, | |
| embedding_key="t5xxl", | |
| tokenizer_class=T5TokenizerFast, | |
| has_start_token=False, | |
| pad_to_max_length=False, | |
| max_length=99999999, | |
| min_length=256, | |
| ) | |
| class T5LayerNorm(torch.nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None): | |
| """#### Initialize T5 Layer Normalization | |
| #### Args: | |
| - `hidden_size` (int): Hidden size. | |
| - `eps` (float, optional): Epsilon. Defaults to 1e-6. | |
| - `dtype` (torch.dtype, optional): Data type. Defaults to None. | |
| - `device` (torch.device, optional): Device. Defaults to None. | |
| - `operations` (Operations, optional): Operations. Defaults to None. | |
| """ | |
| super().__init__() | |
| self.weight = torch.nn.Parameter( | |
| torch.empty(hidden_size, dtype=dtype, device=device) | |
| ) | |
| self.variance_epsilon = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """#### Forward pass | |
| #### Args: | |
| - `x` (torch.Tensor): Input tensor. | |
| #### Returns: | |
| - `torch.Tensor`: Output tensor. | |
| """ | |
| variance = x.pow(2).mean(-1, keepdim=True) | |
| x = x * torch.rsqrt(variance + self.variance_epsilon) | |
| return cast.cast_to_input(self.weight, x) * x | |
| class FluxTokenizer: | |
| def __init__(self, embedding_directory=None, tokenizer_data={}): | |
| """#### Initialize Flux Tokenizer | |
| #### Args: | |
| - `embedding_directory` (str, optional): Embedding directory. Defaults to None. | |
| - `tokenizer_data` (dict, optional): Tokenizer data. Defaults to {}. | |
| """ | |
| clip_l_tokenizer_class = tokenizer_data.get( | |
| "clip_l_tokenizer_class", SDToken.SDTokenizer | |
| ) | |
| self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory) | |
| self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) | |
| def tokenize_with_weights(self, text: str, return_word_ids=False) -> dict: | |
| """#### Tokenize text with weights | |
| #### Args: | |
| - `text` (str): Text to tokenize. | |
| - `return_word_ids` (bool, optional): Whether to return word IDs. Defaults to False. | |
| #### Returns: | |
| - `dict`: Tokenized text with weights. | |
| """ | |
| out = {} | |
| out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) | |
| out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) | |
| return out | |
| class FluxClipModel(torch.nn.Module): | |
| def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}): | |
| """#### Initialize FluxClip Model | |
| #### Args: | |
| - `dtype_t5` (torch.dtype, optional): T5 data type. Defaults to None. | |
| - `device` (str, optional): Device. Defaults to "cpu". | |
| - `dtype` (torch.dtype, optional): Data type. Defaults to None. | |
| - `model_options` (dict, optional): Model options. Defaults to {}. | |
| """ | |
| super().__init__() | |
| dtype_t5 = Device.pick_weight_dtype(dtype_t5, dtype, device) | |
| clip_l_class = model_options.get("clip_l_class", SDClip.SDClipModel) | |
| self.clip_l = clip_l_class( | |
| device=device, | |
| dtype=dtype, | |
| return_projected_pooled=False, | |
| model_options=model_options, | |
| ) | |
| self.t5xxl = T5XXLModel( | |
| device=device, dtype=dtype_t5, model_options=model_options | |
| ) | |
| self.dtypes = set([dtype, dtype_t5]) | |
| def reset_clip_options(self) -> None: | |
| """#### Reset CLIP options""" | |
| self.clip_l.reset_clip_options() | |
| self.t5xxl.reset_clip_options() | |
| def encode_token_weights(self, token_weight_pairs: dict) -> tuple: | |
| """#### Encode token weights | |
| #### Args: | |
| - `token_weight_pairs` (dict): Token weight pairs. | |
| #### Returns: | |
| - `tuple`: Encoded token weights. | |
| """ | |
| token_weight_pairs_l = token_weight_pairs["l"] | |
| token_weight_pairs_t5 = token_weight_pairs["t5xxl"] | |
| t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5) | |
| l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) | |
| return t5_out, l_pooled | |
| def load_sd(self, sd: dict) -> None: | |
| """#### Load state dictionary | |
| #### Args: | |
| - `sd` (dict): State dictionary. | |
| """ | |
| if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: | |
| return self.clip_l.load_sd(sd) | |
| else: | |
| return self.t5xxl.load_sd(sd) | |
| def flux_clip(dtype_t5=None): | |
| """#### Create FluxClip Model | |
| #### Args: | |
| - `dtype_t5` (torch.dtype, optional): T5 data type. Defaults to None. | |
| #### Returns: | |
| - `FluxClipModel`: FluxClip Model class. | |
| """ | |
| class FluxClipModel_(FluxClipModel): | |
| def __init__(self, device="cpu", dtype=None, model_options={}): | |
| """#### Initialize FluxClip Model | |
| #### Args: | |
| - `device` (str, optional): Device. Defaults to "cpu". | |
| - `dtype` (torch.dtype, optional): Data type. Defaults to None. | |
| - `model_options` (dict, optional): Model options. Defaults to {}. | |
| """ | |
| super().__init__( | |
| dtype_t5=dtype_t5, | |
| device=device, | |
| dtype=dtype, | |
| model_options=model_options, | |
| ) | |
| return FluxClipModel_ |