File size: 37,822 Bytes
be716ff 7b05c0e be716ff 26aea29 be716ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import gradio as gr
from app import demo as app
import os
_docs = {'MedicalImageAnalyzer': {'description': 'A Gradio component for AI-agent compatible medical image analysis.\n\nProvides structured output for:\n- HU value analysis (CT only)\n- Tissue classification\n- Fat segmentation (subcutaneous, visceral)\n- Confidence scores and reasoning', 'members': {'__init__': {'value': {'type': 'typing.Optional[typing.Dict[str, typing.Any]][\n typing.Dict[str, typing.Any][str, typing.Any], None\n]', 'default': 'None', 'description': None}, 'label': {'type': 'typing.Optional[str][str, None]', 'default': 'None', 'description': None}, 'info': {'type': 'typing.Optional[str][str, None]', 'default': 'None', 'description': None}, 'every': {'type': 'typing.Optional[float][float, None]', 'default': 'None', 'description': None}, 'show_label': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'container': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'scale': {'type': 'typing.Optional[int][int, None]', 'default': 'None', 'description': None}, 'min_width': {'type': 'typing.Optional[int][int, None]', 'default': 'None', 'description': None}, 'visible': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'elem_id': {'type': 'typing.Optional[str][str, None]', 'default': 'None', 'description': None}, 'elem_classes': {'type': 'typing.Union[typing.List[str], str, NoneType][\n typing.List[str][str], str, None\n]', 'default': 'None', 'description': None}, 'render': {'type': 'typing.Optional[bool][bool, None]', 'default': 'None', 'description': None}, 'key': {'type': 'typing.Union[int, str, NoneType][int, str, None]', 'default': 'None', 'description': None}, 'analysis_mode': {'type': 'str', 'default': '"structured"', 'description': '"structured" for AI agents, "visual" for human interpretation'}, 'include_confidence': {'type': 'bool', 'default': 'True', 'description': 'Include confidence scores in results'}, 'include_reasoning': {'type': 'bool', 'default': 'True', 'description': 'Include reasoning/explanation for findings'}, 'segmentation_types': {'type': 'typing.List[str][str]', 'default': 'None', 'description': 'List of segmentation types to perform'}}, 'postprocess': {'value': {'type': 'typing.Dict[str, typing.Any][str, typing.Any]', 'description': None}}, 'preprocess': {'return': {'type': 'typing.Dict[str, typing.Any][str, typing.Any]', 'description': None}, 'value': None}}, 'events': {'change': {'type': None, 'default': None, 'description': 'Triggered when the value of the MedicalImageAnalyzer changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input.'}, 'select': {'type': None, 'default': None, 'description': 'Event listener for when the user selects or deselects the MedicalImageAnalyzer. Uses event data gradio.SelectData to carry `value` referring to the label of the MedicalImageAnalyzer, and `selected` to refer to state of the MedicalImageAnalyzer. See EventData documentation on how to use this event data'}, 'upload': {'type': None, 'default': None, 'description': 'This listener is triggered when the user uploads a file into the MedicalImageAnalyzer.'}, 'clear': {'type': None, 'default': None, 'description': 'This listener is triggered when the user clears the MedicalImageAnalyzer using the clear button for the component.'}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'MedicalImageAnalyzer': []}}}
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
with gr.Blocks(
css=abs_path,
theme=gr.themes.Default(
font_mono=[
gr.themes.GoogleFont("Inconsolata"),
"monospace",
],
),
) as demo:
gr.Markdown(
"""
# `gradio_medical_image_analyzer`
<div style="display: flex; gap: 7px;">
<a href="https://pypi.org/project/gradio_medical_image_analyzer/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_medical_image_analyzer"></a> <a href="https://github.com/thedatadudech/gradio-medical-image-analyzer/issues" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/Issues-white?logo=github&logoColor=black"></a> <a href="https://huggingface.co/spaces/AbdullahIsaMarkus/gradio_medical_image_analyzer/discussions" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Discuss-%23097EFF?style=flat&logoColor=black"></a>
</div>
AI-agent optimized medical image analysis component for Gradio with DICOM support
""", elem_classes=["md-custom"], header_links=True)
app.render()
gr.Markdown(
"""
## Installation
```bash
pip install gradio_medical_image_analyzer
```
## Usage
```python
#!/usr/bin/env python3
\"\"\"
Demo for MedicalImageAnalyzer - Enhanced with file upload and overlay visualization
\"\"\"
import gradio as gr
import numpy as np
import sys
import os
import cv2
from pathlib import Path
# Add backend to path
sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(__file__)), 'backend'))
from gradio_medical_image_analyzer import MedicalImageAnalyzer
def draw_roi_on_image(image, roi_x, roi_y, roi_radius):
\"\"\"Draw ROI circle on the image\"\"\"
# Convert to RGB if grayscale
if len(image.shape) == 2:
image_rgb = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image_rgb = image.copy()
# Draw ROI circle
center = (int(roi_x), int(roi_y))
radius = int(roi_radius)
# Draw outer circle (white)
cv2.circle(image_rgb, center, radius, (255, 255, 255), 2)
# Draw inner circle (red)
cv2.circle(image_rgb, center, radius-1, (255, 0, 0), 2)
# Draw center cross
cv2.line(image_rgb, (center[0]-5, center[1]), (center[0]+5, center[1]), (255, 0, 0), 2)
cv2.line(image_rgb, (center[0], center[1]-5), (center[0], center[1]+5), (255, 0, 0), 2)
return image_rgb
def create_fat_overlay(base_image, segmentation_results):
\"\"\"Create overlay image with fat segmentation highlighted\"\"\"
# Convert to RGB
if len(base_image.shape) == 2:
overlay_img = cv2.cvtColor(base_image, cv2.COLOR_GRAY2RGB)
else:
overlay_img = base_image.copy()
# Check if we have segmentation masks
if not segmentation_results or 'segments' not in segmentation_results:
return overlay_img
segments = segmentation_results.get('segments', {})
# Apply subcutaneous fat overlay (yellow)
if 'subcutaneous' in segments and segments['subcutaneous'].get('mask') is not None:
mask = segments['subcutaneous']['mask']
yellow_overlay = np.zeros_like(overlay_img)
yellow_overlay[mask > 0] = [255, 255, 0] # Yellow
overlay_img = cv2.addWeighted(overlay_img, 0.7, yellow_overlay, 0.3, 0)
# Apply visceral fat overlay (red)
if 'visceral' in segments and segments['visceral'].get('mask') is not None:
mask = segments['visceral']['mask']
red_overlay = np.zeros_like(overlay_img)
red_overlay[mask > 0] = [255, 0, 0] # Red
overlay_img = cv2.addWeighted(overlay_img, 0.7, red_overlay, 0.3, 0)
# Add legend
cv2.putText(overlay_img, "Yellow: Subcutaneous Fat", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
cv2.putText(overlay_img, "Red: Visceral Fat", (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return overlay_img
def process_and_analyze(file_obj, modality, task, roi_x, roi_y, roi_radius, symptoms, show_overlay=False):
\"\"\"
Processes uploaded file and performs analysis
\"\"\"
if file_obj is None:
return None, "No file selected", None, {}, None
# Create analyzer instance
analyzer = MedicalImageAnalyzer(
analysis_mode="structured",
include_confidence=True,
include_reasoning=True
)
try:
# Process the file (DICOM or image)
file_path = file_obj.name if hasattr(file_obj, 'name') else str(file_obj)
pixel_array, display_array, metadata = analyzer.process_file(file_path)
# Update modality from file metadata if it's a DICOM
if metadata.get('file_type') == 'DICOM' and 'modality' in metadata:
modality = metadata['modality']
# Prepare analysis parameters
analysis_params = {
"image": pixel_array,
"modality": modality,
"task": task
}
# Add ROI if applicable
if task in ["analyze_point", "full_analysis"]:
# Scale ROI coordinates to image size
h, w = pixel_array.shape
roi_x_scaled = int(roi_x * w / 512) # Assuming slider max is 512
roi_y_scaled = int(roi_y * h / 512)
analysis_params["roi"] = {
"x": roi_x_scaled,
"y": roi_y_scaled,
"radius": roi_radius
}
# Add clinical context
if symptoms:
analysis_params["clinical_context"] = {"symptoms": symptoms}
# Perform analysis
results = analyzer.analyze_image(**analysis_params)
# Create visual report
visual_report = create_visual_report(results, metadata)
# Add metadata info
info = f"π {metadata.get('file_type', 'Unknown')} | "
info += f"π₯ {modality} | "
info += f"π {metadata.get('shape', 'Unknown')}"
if metadata.get('window_center'):
info += f" | Window C:{metadata['window_center']:.0f} W:{metadata['window_width']:.0f}"
# Create overlay image if requested
overlay_image = None
if show_overlay:
# For ROI visualization
if task in ["analyze_point", "full_analysis"] and roi_x and roi_y:
overlay_image = draw_roi_on_image(display_array.copy(), roi_x_scaled, roi_y_scaled, roi_radius)
# For fat segmentation overlay (simplified version since we don't have masks in current implementation)
elif task == "segment_fat" and 'segmentation' in results and modality == 'CT':
# For now, just draw ROI since we don't have actual masks
overlay_image = display_array.copy()
if len(overlay_image.shape) == 2:
overlay_image = cv2.cvtColor(overlay_image, cv2.COLOR_GRAY2RGB)
# Add text overlay about fat percentages
if 'statistics' in results['segmentation']:
stats = results['segmentation']['statistics']
cv2.putText(overlay_image, f"Total Fat: {stats.get('total_fat_percentage', 0):.1f}%",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(overlay_image, f"Subcutaneous: {stats.get('subcutaneous_fat_percentage', 0):.1f}%",
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
cv2.putText(overlay_image, f"Visceral: {stats.get('visceral_fat_percentage', 0):.1f}%",
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
return display_array, info, visual_report, results, overlay_image
except Exception as e:
error_msg = f"Error: {str(e)}"
return None, error_msg, f"<div style='color: red;'>β {error_msg}</div>", {"error": error_msg}, None
def create_visual_report(results, metadata):
\"\"\"Creates a visual HTML report with improved styling\"\"\"
html = f\"\"\"
<div class='medical-report' style='font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
padding: 24px;
background: #ffffff;
border-radius: 12px;
max-width: 100%;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
color: #1a1a1a !important;'>
<h2 style='color: #1e40af !important;
border-bottom: 3px solid #3b82f6;
padding-bottom: 12px;
margin-bottom: 20px;
font-size: 24px;
font-weight: 600;'>
π₯ Medical Image Analysis Report
</h2>
<div style='background: #f0f9ff;
padding: 20px;
margin: 16px 0;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);'>
<h3 style='color: #1e3a8a !important;
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;'>
π Metadata
</h3>
<table style='width: 100%; border-collapse: collapse;'>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important; width: 40%;'><strong style='color: #374151 !important;'>File Type:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{metadata.get('file_type', 'Unknown')}</td>
</tr>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Modality:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{results.get('modality', 'Unknown')}</td>
</tr>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Image Size:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{metadata.get('shape', 'Unknown')}</td>
</tr>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Timestamp:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{results.get('timestamp', 'N/A')}</td>
</tr>
</table>
</div>
\"\"\"
# Point Analysis
if 'point_analysis' in results:
pa = results['point_analysis']
tissue = pa.get('tissue_type', {})
html += f\"\"\"
<div style='background: #f0f9ff;
padding: 20px;
margin: 16px 0;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);'>
<h3 style='color: #1e3a8a !important;
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;'>
π― Point Analysis
</h3>
<table style='width: 100%; border-collapse: collapse;'>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important; width: 40%;'><strong style='color: #374151 !important;'>Position:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>({pa.get('location', {}).get('x', 'N/A')}, {pa.get('location', {}).get('y', 'N/A')})</td>
</tr>
\"\"\"
if results.get('modality') == 'CT':
html += f\"\"\"
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>HU Value:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important; font-weight: 500;'>{pa.get('hu_value', 'N/A'):.1f}</td>
</tr>
\"\"\"
else:
html += f\"\"\"
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Intensity:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{pa.get('intensity', 'N/A'):.3f}</td>
</tr>
\"\"\"
html += f\"\"\"
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Tissue Type:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>
<span style='font-size: 1.3em; vertical-align: middle;'>{tissue.get('icon', '')}</span>
<span style='font-weight: 500; text-transform: capitalize;'>{tissue.get('type', 'Unknown').replace('_', ' ')}</span>
</td>
</tr>
<tr>
<td style='padding: 8px 0; color: #4b5563 !important;'><strong style='color: #374151 !important;'>Confidence:</strong></td>
<td style='padding: 8px 0; color: #1f2937 !important;'>{pa.get('confidence', 'N/A')}</td>
</tr>
</table>
\"\"\"
if 'reasoning' in pa:
html += f\"\"\"
<div style='margin-top: 12px;
padding: 12px;
background: #dbeafe;
border-left: 3px solid #3b82f6;
border-radius: 4px;'>
<p style='margin: 0; color: #1e40af !important; font-style: italic;'>
π {pa['reasoning']}
</p>
</div>
\"\"\"
html += "</div>"
# Segmentation Results
if 'segmentation' in results and results['segmentation']:
seg = results['segmentation']
if 'statistics' in seg:
# Fat segmentation for CT
stats = seg['statistics']
html += f\"\"\"
<div style='background: #f0f9ff;
padding: 20px;
margin: 16px 0;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);'>
<h3 style='color: #1e3a8a !important;
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;'>
π¬ Fat Segmentation Analysis
</h3>
<div style='display: grid; grid-template-columns: 1fr 1fr; gap: 16px;'>
<div style='padding: 16px; background: #ffffff; border-radius: 6px; border: 1px solid #e5e7eb;'>
<h4 style='color: #6b7280 !important; font-size: 14px; margin: 0 0 8px 0; font-weight: 500;'>Total Fat</h4>
<p style='color: #1f2937 !important; font-size: 24px; font-weight: 600; margin: 0;'>{stats.get('total_fat_percentage', 0):.1f}%</p>
</div>
<div style='padding: 16px; background: #fffbeb; border-radius: 6px; border: 1px solid #fbbf24;'>
<h4 style='color: #92400e !important; font-size: 14px; margin: 0 0 8px 0; font-weight: 500;'>Subcutaneous</h4>
<p style='color: #d97706 !important; font-size: 24px; font-weight: 600; margin: 0;'>{stats.get('subcutaneous_fat_percentage', 0):.1f}%</p>
</div>
<div style='padding: 16px; background: #fef2f2; border-radius: 6px; border: 1px solid #fca5a5;'>
<h4 style='color: #991b1b !important; font-size: 14px; margin: 0 0 8px 0; font-weight: 500;'>Visceral</h4>
<p style='color: #dc2626 !important; font-size: 24px; font-weight: 600; margin: 0;'>{stats.get('visceral_fat_percentage', 0):.1f}%</p>
</div>
<div style='padding: 16px; background: #eff6ff; border-radius: 6px; border: 1px solid #93c5fd;'>
<h4 style='color: #1e3a8a !important; font-size: 14px; margin: 0 0 8px 0; font-weight: 500;'>V/S Ratio</h4>
<p style='color: #1e40af !important; font-size: 24px; font-weight: 600; margin: 0;'>{stats.get('visceral_subcutaneous_ratio', 0):.2f}</p>
</div>
</div>
\"\"\"
if 'interpretation' in seg:
interp = seg['interpretation']
obesity_color = "#16a34a" if interp.get("obesity_risk") == "normal" else "#d97706" if interp.get("obesity_risk") == "moderate" else "#dc2626"
visceral_color = "#16a34a" if interp.get("visceral_risk") == "normal" else "#d97706" if interp.get("visceral_risk") == "moderate" else "#dc2626"
html += f\"\"\"
<div style='margin-top: 16px; padding: 16px; background: #f3f4f6; border-radius: 6px;'>
<h4 style='color: #374151 !important; font-size: 16px; font-weight: 600; margin-bottom: 8px;'>Risk Assessment</h4>
<div style='display: grid; grid-template-columns: 1fr 1fr; gap: 12px;'>
<div>
<span style='color: #6b7280 !important; font-size: 14px;'>Obesity Risk:</span>
<span style='color: {obesity_color} !important; font-weight: 600; margin-left: 8px;'>{interp.get('obesity_risk', 'N/A').upper()}</span>
</div>
<div>
<span style='color: #6b7280 !important; font-size: 14px;'>Visceral Risk:</span>
<span style='color: {visceral_color} !important; font-weight: 600; margin-left: 8px;'>{interp.get('visceral_risk', 'N/A').upper()}</span>
</div>
</div>
\"\"\"
if interp.get('recommendations'):
html += \"\"\"
<div style='margin-top: 12px; padding-top: 12px; border-top: 1px solid #e5e7eb;'>
<h5 style='color: #374151 !important; font-size: 14px; font-weight: 600; margin-bottom: 8px;'>π‘ Recommendations</h5>
<ul style='margin: 0; padding-left: 20px; color: #4b5563 !important;'>
\"\"\"
for rec in interp['recommendations']:
html += f"<li style='margin: 4px 0;'>{rec}</li>"
html += "</ul></div>"
html += "</div>"
html += "</div>"
# Quality Assessment
if 'quality_metrics' in results:
quality = results['quality_metrics']
quality_colors = {
'excellent': '#16a34a',
'good': '#16a34a',
'fair': '#d97706',
'poor': '#dc2626',
'unknown': '#6b7280'
}
q_color = quality_colors.get(quality.get('overall_quality', 'unknown'), '#6b7280')
html += f\"\"\"
<div style='background: #f0f9ff;
padding: 20px;
margin: 16px 0;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);'>
<h3 style='color: #1e3a8a !important;
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;'>
π Image Quality Assessment
</h3>
<div style='display: flex; align-items: center; gap: 16px;'>
<div>
<span style='color: #4b5563 !important; font-size: 14px;'>Overall Quality:</span>
<span style='color: {q_color} !important;
font-size: 18px;
font-weight: 700;
margin-left: 8px;'>
{quality.get('overall_quality', 'unknown').upper()}
</span>
</div>
</div>
\"\"\"
if quality.get('issues'):
html += f\"\"\"
<div style='margin-top: 12px;
padding: 12px;
background: #fef3c7;
border-left: 3px solid #f59e0b;
border-radius: 4px;'>
<strong style='color: #92400e !important;'>Issues Detected:</strong>
<ul style='margin: 4px 0 0 0; padding-left: 20px; color: #92400e !important;'>
\"\"\"
for issue in quality['issues']:
html += f"<li style='margin: 2px 0;'>{issue}</li>"
html += "</ul></div>"
html += "</div>"
html += "</div>"
return html
def create_demo():
with gr.Blocks(
title="Medical Image Analyzer - Enhanced Demo",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate",
text_size="md",
spacing_size="md",
radius_size="md",
).set(
# Medical blue theme colors
body_background_fill="*neutral_950",
body_background_fill_dark="*neutral_950",
block_background_fill="*neutral_900",
block_background_fill_dark="*neutral_900",
border_color_primary="*primary_600",
border_color_primary_dark="*primary_600",
# Text colors for better contrast
body_text_color="*neutral_100",
body_text_color_dark="*neutral_100",
body_text_color_subdued="*neutral_300",
body_text_color_subdued_dark="*neutral_300",
# Button colors
button_primary_background_fill="*primary_600",
button_primary_background_fill_dark="*primary_600",
button_primary_text_color="white",
button_primary_text_color_dark="white",
),
css=\"\"\"
/* Medical blue theme with high contrast */
:root {
--medical-blue: #1e40af;
--medical-blue-light: #3b82f6;
--medical-blue-dark: #1e3a8a;
--text-primary: #f9fafb;
--text-secondary: #e5e7eb;
--bg-primary: #0f172a;
--bg-secondary: #1e293b;
--bg-tertiary: #334155;
}
/* Override default text colors for medical theme */
* {
color: var(--text-primary) !important;
}
/* Style the file upload area */
.file-upload {
border: 2px dashed var(--medical-blue-light) !important;
border-radius: 8px !important;
padding: 20px !important;
text-align: center !important;
background: var(--bg-secondary) !important;
transition: all 0.3s ease !important;
color: var(--text-primary) !important;
}
.file-upload:hover {
border-color: var(--medical-blue) !important;
background: var(--bg-tertiary) !important;
box-shadow: 0 0 20px rgba(59, 130, 246, 0.2) !important;
}
/* Ensure report text is readable with white background */
.medical-report {
background: #ffffff !important;
border: 2px solid var(--medical-blue-light) !important;
border-radius: 8px !important;
padding: 16px !important;
color: #1a1a1a !important;
}
.medical-report * {
color: #1f2937 !important; /* Dark gray text */
}
.medical-report h2 {
color: #1e40af !important; /* Medical blue for main heading */
}
.medical-report h3, .medical-report h4 {
color: #1e3a8a !important; /* Darker medical blue for subheadings */
}
.medical-report strong {
color: #374151 !important; /* Darker gray for labels */
}
.medical-report td {
color: #1f2937 !important; /* Ensure table text is dark */
}
/* Report sections with light blue background */
.medical-report > div {
background: #f0f9ff !important;
color: #1f2937 !important;
}
/* Medical blue accents for UI elements */
.gr-button-primary {
background: var(--medical-blue) !important;
border-color: var(--medical-blue) !important;
}
.gr-button-primary:hover {
background: var(--medical-blue-dark) !important;
border-color: var(--medical-blue-dark) !important;
}
/* Tab styling */
.gr-tab-item {
border-color: var(--medical-blue-light) !important;
}
.gr-tab-item.selected {
background: var(--medical-blue) !important;
color: white !important;
}
/* Accordion styling */
.gr-accordion {
border-color: var(--medical-blue-light) !important;
}
/* Slider track in medical blue */
input[type="range"]::-webkit-slider-track {
background: var(--bg-tertiary) !important;
}
input[type="range"]::-webkit-slider-thumb {
background: var(--medical-blue) !important;
}
\"\"\"
) as demo:
gr.Markdown(\"\"\"
# π₯ Medical Image Analyzer
Supports **DICOM** (.dcm) and all image formats with automatic modality detection!
\"\"\")
with gr.Row():
with gr.Column(scale=1):
# File upload - no file type restrictions
with gr.Group():
gr.Markdown("### π€ Upload Medical Image")
file_input = gr.File(
label="Select Medical Image File (.dcm, .dicom, IM_*, .png, .jpg, etc.)",
file_count="single",
type="filepath",
elem_classes="file-upload"
# Note: NO file_types parameter = accepts ALL files
)
gr.Markdown(\"\"\"
<small style='color: #666;'>
Accepts: DICOM (.dcm, .dicom), Images (.png, .jpg, .jpeg, .tiff, .bmp),
and files without extensions (e.g., IM_0001, IM_0002, etc.)
</small>
\"\"\")
# Modality selection
modality = gr.Radio(
choices=["CT", "CR", "DX", "RX", "DR"],
value="CT",
label="Modality",
info="Will be auto-detected for DICOM files"
)
# Task selection
task = gr.Dropdown(
choices=[
("π― Point Analysis", "analyze_point"),
("π¬ Fat Segmentation (CT only)", "segment_fat"),
("π Full Analysis", "full_analysis")
],
value="full_analysis",
label="Analysis Task"
)
# ROI settings
with gr.Accordion("π― Region of Interest (ROI)", open=True):
roi_x = gr.Slider(0, 512, 256, label="X Position", step=1)
roi_y = gr.Slider(0, 512, 256, label="Y Position", step=1)
roi_radius = gr.Slider(5, 50, 10, label="Radius", step=1)
# Clinical context
with gr.Accordion("π₯ Clinical Context", open=False):
symptoms = gr.CheckboxGroup(
choices=[
"dyspnea", "chest_pain", "abdominal_pain",
"trauma", "obesity_screening", "routine_check"
],
label="Symptoms/Indication"
)
# Visualization options
with gr.Accordion("π¨ Visualization Options", open=True):
show_overlay = gr.Checkbox(
label="Show ROI/Segmentation Overlay",
value=True,
info="Display ROI circle or fat segmentation info on the image"
)
analyze_btn = gr.Button("π¬ Analyze", variant="primary", size="lg")
with gr.Column(scale=2):
# Results with tabs for different views
with gr.Tab("πΌοΈ Original Image"):
image_display = gr.Image(label="Medical Image", type="numpy")
with gr.Tab("π― Overlay View"):
overlay_display = gr.Image(label="Image with Overlay", type="numpy")
file_info = gr.Textbox(label="File Information", lines=1)
with gr.Tab("π Visual Report"):
report_html = gr.HTML()
with gr.Tab("π§ JSON Output"):
json_output = gr.JSON(label="Structured Data for AI Agents")
# Examples and help
with gr.Row():
gr.Markdown(\"\"\"
### π Supported Formats
- **DICOM**: Automatic HU value extraction and modality detection
- **PNG/JPG**: Interpreted based on selected modality
- **All Formats**: Automatic grayscale conversion
- **Files without extension**: Supported (e.g., IM_0001) - will try DICOM first
### π― Usage
1. Upload a medical image file
2. Select modality (auto-detected for DICOM)
3. Choose analysis task
4. Adjust ROI position for point analysis
5. Click "Analyze"
### π‘ Features
- **ROI Visualization**: See the exact area being analyzed
- **Fat Segmentation**: Visual percentages for CT scans
- **Multi-format Support**: Works with any medical image format
- **AI Agent Ready**: Structured JSON output for integration
\"\"\")
# Connect the interface
analyze_btn.click(
fn=process_and_analyze,
inputs=[file_input, modality, task, roi_x, roi_y, roi_radius, symptoms, show_overlay],
outputs=[image_display, file_info, report_html, json_output, overlay_display]
)
# Auto-update ROI limits when image is loaded
def update_roi_on_upload(file_obj):
if file_obj is None:
return gr.update(), gr.update()
try:
analyzer = MedicalImageAnalyzer()
_, _, metadata = analyzer.process_file(file_obj.name if hasattr(file_obj, 'name') else str(file_obj))
if 'shape' in metadata:
h, w = metadata['shape']
return gr.update(maximum=w-1, value=w//2), gr.update(maximum=h-1, value=h//2)
except:
pass
return gr.update(), gr.update()
file_input.change(
fn=update_roi_on_upload,
inputs=[file_input],
outputs=[roi_x, roi_y]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()
```
""", elem_classes=["md-custom"], header_links=True)
gr.Markdown("""
## `MedicalImageAnalyzer`
### Initialization
""", elem_classes=["md-custom"], header_links=True)
gr.ParamViewer(value=_docs["MedicalImageAnalyzer"]["members"]["__init__"], linkify=[])
gr.Markdown("### Events")
gr.ParamViewer(value=_docs["MedicalImageAnalyzer"]["events"], linkify=['Event'])
gr.Markdown("""
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
```python
def predict(
value: typing.Dict[str, typing.Any][str, typing.Any]
) -> typing.Dict[str, typing.Any][str, typing.Any]:
return value
```
""", elem_classes=["md-custom", "MedicalImageAnalyzer-user-fn"], header_links=True)
demo.load(None, js=r"""function() {
const refs = {};
const user_fn_refs = {
MedicalImageAnalyzer: [], };
requestAnimationFrame(() => {
Object.entries(user_fn_refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}-user-fn`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
Object.entries(refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
})
}
""")
demo.launch()
|