gradio_medical_image_analyzer_local / src /FILE_UPLOAD_IMPLEMENTATION.md
AbdullahIsaMarkus's picture
Upload folder using huggingface_hub
be716ff verified

A newer version of the Gradio SDK is available: 5.49.1

Upgrade

File Upload Implementation for Medical Image Analyzer

Overview

The medical_image_analyzer now fully supports uploading files without extensions (like IM_0001), matching the vetdicomviewer implementation.

Key Implementation Details

1. Backend (medical_image_analyzer.py)

# Line 674 in process_file method
ds = pydicom.dcmread(file_path, force=True)
  • Uses force=True parameter to read any file as DICOM first
  • Falls back to regular image processing if DICOM reading fails
  • No filename filtering - accepts all files

2. Frontend File Upload (wrapper_test.py & app.py)

file_input = gr.File(
    label="Select Medical Image File (.dcm, .dicom, IM_*, .png, .jpg, etc.)",
    file_count="single",
    type="filepath",
    elem_classes="file-upload"
    # Note: NO file_types parameter = accepts ALL files
)
  • No file_types parameter means ALL files are accepted
  • Clear labeling mentions "IM_*" files
  • Custom CSS styling for better UX

3. Svelte Component (Index.svelte)

// Always try DICOM first for files without extensions
if (!file_ext || file_ext === 'dcm' || file_ext === 'dicom' || 
    file.type === 'application/dicom' || file.name.startsWith('IM_')) {
    // Process as DICOM
}
  • Prioritizes DICOM processing for files without extensions
  • Specifically checks for files starting with "IM_"

Features Added

1. ROI Visualization

  • Draw ROI circle on the image
  • Visual feedback for point analysis location
  • Toggle to show/hide overlay

2. Fat Segmentation Overlay

  • Display fat percentages on CT images
  • Color-coded visualization (when masks available)
  • Legend for subcutaneous vs visceral fat

3. Enhanced UI

  • Two-tab view: Original Image | Overlay View
  • File information display with metadata
  • Improved text contrast and styling
  • English interface (no German text)

Testing

Run the test script to verify IM_0001 support:

python test_im_files.py

Output confirms:

  • βœ… IM_0001 files load successfully
  • βœ… DICOM metadata extracted properly
  • βœ… Analysis functions work correctly
  • βœ… HU values calculated for CT images

File Type Support

  1. DICOM files: .dcm, .dicom
  2. Files without extensions: IM_0001, IM_0002, etc.
  3. Regular images: .png, .jpg, .jpeg, .tiff, .bmp
  4. Any other file: Will attempt DICOM first, then image

Usage Example

# Both wrapper_test.py and app.py now support:
# 1. Upload any medical image file
# 2. Automatic modality detection for DICOM
# 3. ROI visualization on demand
# 4. Fat segmentation info overlay

# The file upload is unrestricted:
# - Accepts ALL file types
# - Uses force=True for DICOM reading
# - Graceful fallback to image processing

Summary

The medical_image_analyzer now matches vetdicomviewer's file handling capabilities:

  • βœ… Supports files without extensions (IM_0001)
  • βœ… ROI visualization on images
  • βœ… Fat segmentation overlay (text-based currently)
  • βœ… Enhanced UI with better contrast
  • βœ… English-only interface
  • βœ… Synchronized app.py with wrapper_test.py features