Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import uvicorn
|
| 4 |
import torch
|
| 5 |
-
from transformers import AutoTokenizer,
|
| 6 |
import time
|
| 7 |
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
|
|
@@ -24,8 +39,7 @@ app.add_middleware(
|
|
| 24 |
|
| 25 |
class YAHBot:
|
| 26 |
def __init__(self):
|
| 27 |
-
|
| 28 |
-
self.repo_id = "Adedoyinjames/brain-ai" # Your HF repo
|
| 29 |
self.tokenizer = None
|
| 30 |
self.model = None
|
| 31 |
self._load_model()
|
|
@@ -34,8 +48,16 @@ class YAHBot:
|
|
| 34 |
"""Load the model from your Hugging Face repo"""
|
| 35 |
try:
|
| 36 |
print(f"π Loading AI model from {self.repo_id}...")
|
| 37 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
print("β
AI model loaded successfully from HF repo!")
|
| 40 |
except Exception as e:
|
| 41 |
print(f"β Failed to load AI model from repo: {e}")
|
|
@@ -43,12 +65,12 @@ class YAHBot:
|
|
| 43 |
self.tokenizer = None
|
| 44 |
|
| 45 |
def generate_response(self, user_input):
|
| 46 |
-
"""Generate response using
|
| 47 |
if self.model and self.tokenizer:
|
| 48 |
try:
|
| 49 |
-
prompt
|
|
|
|
| 50 |
|
| 51 |
-
# Tokenize
|
| 52 |
inputs = self.tokenizer(
|
| 53 |
prompt,
|
| 54 |
return_tensors="pt",
|
|
@@ -57,18 +79,27 @@ class YAHBot:
|
|
| 57 |
padding=True
|
| 58 |
)
|
| 59 |
|
| 60 |
-
#
|
|
|
|
|
|
|
|
|
|
| 61 |
with torch.no_grad():
|
| 62 |
outputs = self.model.generate(
|
| 63 |
inputs.input_ids,
|
| 64 |
-
|
| 65 |
num_return_sequences=1,
|
| 66 |
temperature=0.7,
|
| 67 |
do_sample=True,
|
| 68 |
-
pad_token_id=self.tokenizer.
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
return response
|
| 73 |
|
| 74 |
except Exception as e:
|
|
@@ -100,7 +131,8 @@ async def root():
|
|
| 100 |
return {
|
| 101 |
"message": "YAH Tech AI API is running",
|
| 102 |
"status": "active",
|
| 103 |
-
"model_repo": yah_bot.repo_id,
|
|
|
|
| 104 |
"endpoints": {
|
| 105 |
"chat": "POST /api/chat",
|
| 106 |
"health": "GET /api/health"
|
|
|
|
| 1 |
+
# Install required dependencies
|
| 2 |
+
import subprocess
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
def install_packages():
|
| 6 |
+
packages = ["sentencepiece", "protobuf", "transformers", "torch", "accelerate"]
|
| 7 |
+
for package in packages:
|
| 8 |
+
try:
|
| 9 |
+
__import__(package)
|
| 10 |
+
except ImportError:
|
| 11 |
+
print(f"Installing {package}...")
|
| 12 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 13 |
+
|
| 14 |
+
install_packages()
|
| 15 |
+
|
| 16 |
from fastapi import FastAPI, HTTPException
|
| 17 |
from pydantic import BaseModel
|
| 18 |
import uvicorn
|
| 19 |
import torch
|
| 20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 21 |
import time
|
| 22 |
from fastapi.middleware.cors import CORSMiddleware
|
| 23 |
|
|
|
|
| 39 |
|
| 40 |
class YAHBot:
|
| 41 |
def __init__(self):
|
| 42 |
+
self.repo_id = "Adedoyinjames/brain-ai"
|
|
|
|
| 43 |
self.tokenizer = None
|
| 44 |
self.model = None
|
| 45 |
self._load_model()
|
|
|
|
| 48 |
"""Load the model from your Hugging Face repo"""
|
| 49 |
try:
|
| 50 |
print(f"π Loading AI model from {self.repo_id}...")
|
| 51 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 52 |
+
self.repo_id,
|
| 53 |
+
trust_remote_code=True # Required for phi-3
|
| 54 |
+
)
|
| 55 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
self.repo_id,
|
| 57 |
+
trust_remote_code=True, # Required for phi-3
|
| 58 |
+
torch_dtype=torch.float16,
|
| 59 |
+
device_map="auto"
|
| 60 |
+
)
|
| 61 |
print("β
AI model loaded successfully from HF repo!")
|
| 62 |
except Exception as e:
|
| 63 |
print(f"β Failed to load AI model from repo: {e}")
|
|
|
|
| 65 |
self.tokenizer = None
|
| 66 |
|
| 67 |
def generate_response(self, user_input):
|
| 68 |
+
"""Generate response using causal language model"""
|
| 69 |
if self.model and self.tokenizer:
|
| 70 |
try:
|
| 71 |
+
# Format prompt for phi-3 (causal LM)
|
| 72 |
+
prompt = f"<|user|>\n{user_input}<|end|>\n<|assistant|>\n"
|
| 73 |
|
|
|
|
| 74 |
inputs = self.tokenizer(
|
| 75 |
prompt,
|
| 76 |
return_tensors="pt",
|
|
|
|
| 79 |
padding=True
|
| 80 |
)
|
| 81 |
|
| 82 |
+
# Move to same device as model
|
| 83 |
+
device = next(self.model.parameters()).device
|
| 84 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 85 |
+
|
| 86 |
with torch.no_grad():
|
| 87 |
outputs = self.model.generate(
|
| 88 |
inputs.input_ids,
|
| 89 |
+
max_new_tokens=150,
|
| 90 |
num_return_sequences=1,
|
| 91 |
temperature=0.7,
|
| 92 |
do_sample=True,
|
| 93 |
+
pad_token_id=self.tokenizer.eos_token_id, # Use EOS token for padding
|
| 94 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 95 |
)
|
| 96 |
|
| 97 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 98 |
+
|
| 99 |
+
# Remove the prompt from the response for cleaner output
|
| 100 |
+
if prompt in response:
|
| 101 |
+
response = response.replace(prompt, "").strip()
|
| 102 |
+
|
| 103 |
return response
|
| 104 |
|
| 105 |
except Exception as e:
|
|
|
|
| 131 |
return {
|
| 132 |
"message": "YAH Tech AI API is running",
|
| 133 |
"status": "active",
|
| 134 |
+
"model_repo": yah_bot.repo_id,
|
| 135 |
+
"model_type": "causal_lm",
|
| 136 |
"endpoints": {
|
| 137 |
"chat": "POST /api/chat",
|
| 138 |
"health": "GET /api/health"
|