Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import pytorch_lightning as pl
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
import logging
|
| 9 |
from tokenizers import Tokenizer
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
-
import gc
|
| 12 |
-
import math
|
| 13 |
|
| 14 |
# --- Configuration ---
|
| 15 |
MODEL_REPO_ID = "AdrianM0/smiles-to-iupac-translator"
|
|
@@ -20,28 +20,39 @@ CONFIG_FILENAME = "config.json"
|
|
| 20 |
# --- End Configuration ---
|
| 21 |
|
| 22 |
# --- Logging ---
|
| 23 |
-
logging.basicConfig(
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# --- Load Helper Code (Only Model Definition Needed) ---
|
| 26 |
try:
|
| 27 |
# We only need the LightningModule definition and the mask function now
|
| 28 |
from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask
|
|
|
|
| 29 |
logging.info("Successfully imported from enhanced_trainer.py.")
|
| 30 |
|
| 31 |
# We will define beam_search_decode and translate locally in this file
|
| 32 |
# REMOVED: from test_ckpt import beam_search_decode, translate
|
| 33 |
|
| 34 |
except ImportError as e:
|
| 35 |
-
logging.error(
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
exit()
|
| 38 |
except Exception as e:
|
| 39 |
-
logging.error(
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
exit()
|
| 42 |
|
| 43 |
# --- Global Variables (Load Model Once) ---
|
| 44 |
-
model: pl.LightningModule | None = None
|
| 45 |
smiles_tokenizer: Tokenizer | None = None
|
| 46 |
iupac_tokenizer: Tokenizer | None = None
|
| 47 |
device: torch.device | None = None
|
|
@@ -49,6 +60,7 @@ config: dict | None = None
|
|
| 49 |
|
| 50 |
# --- Beam Search Decoding Logic (Moved from test_ckpt.py) ---
|
| 51 |
|
|
|
|
| 52 |
def beam_search_decode(
|
| 53 |
model: pl.LightningModule,
|
| 54 |
src: torch.Tensor,
|
|
@@ -56,11 +68,11 @@ def beam_search_decode(
|
|
| 56 |
max_len: int,
|
| 57 |
sos_idx: int,
|
| 58 |
eos_idx: int,
|
| 59 |
-
pad_idx: int,
|
| 60 |
device: torch.device,
|
| 61 |
beam_width: int = 5,
|
| 62 |
-
n_best: int = 5,
|
| 63 |
-
length_penalty: float = 0.6
|
| 64 |
) -> list[torch.Tensor]:
|
| 65 |
"""
|
| 66 |
Performs beam search decoding using the LightningModule's model.
|
|
@@ -68,20 +80,24 @@ def beam_search_decode(
|
|
| 68 |
"""
|
| 69 |
# Ensure model is in eval mode (redundant if called after model.eval(), but safe)
|
| 70 |
model.eval()
|
| 71 |
-
transformer_model = model.model
|
| 72 |
-
n_best = min(n_best, beam_width)
|
| 73 |
|
| 74 |
try:
|
| 75 |
with torch.no_grad():
|
| 76 |
# --- Encode Source ---
|
| 77 |
-
memory = transformer_model.encode(
|
|
|
|
|
|
|
| 78 |
memory = memory.to(device)
|
| 79 |
# Ensure memory_key_padding_mask is also on the correct device for decode
|
| 80 |
-
memory_key_padding_mask = src_padding_mask.to(memory.device)
|
| 81 |
|
| 82 |
# --- Initialize Beams ---
|
| 83 |
-
initial_beam_seq = torch.ones(1, 1, dtype=torch.long, device=device).fill_(
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
active_beams = [(initial_beam_seq, initial_beam_score)]
|
| 86 |
finished_beams = []
|
| 87 |
|
|
@@ -96,29 +112,45 @@ def beam_search_decode(
|
|
| 96 |
finished_beams.append((current_seq, current_score))
|
| 97 |
continue
|
| 98 |
|
| 99 |
-
tgt_input = current_seq
|
| 100 |
tgt_seq_len = tgt_input.shape[1]
|
| 101 |
-
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
decoder_output = transformer_model.decode(
|
| 105 |
tgt=tgt_input,
|
| 106 |
memory=memory,
|
| 107 |
tgt_mask=tgt_mask,
|
| 108 |
tgt_padding_mask=tgt_padding_mask,
|
| 109 |
-
memory_key_padding_mask=memory_key_padding_mask
|
| 110 |
-
)
|
| 111 |
|
| 112 |
-
next_token_logits = transformer_model.generator(
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
topk_log_probs, topk_indices = torch.topk(
|
|
|
|
|
|
|
| 116 |
|
| 117 |
for i in range(beam_width):
|
| 118 |
next_token_id = topk_indices[0, i].item()
|
| 119 |
-
next_score = topk_log_probs[0, i].reshape(
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
potential_next_beams.append((new_seq, next_score))
|
| 123 |
|
| 124 |
potential_next_beams.sort(key=lambda x: x[1].item(), reverse=True)
|
|
@@ -126,14 +158,14 @@ def beam_search_decode(
|
|
| 126 |
active_beams = []
|
| 127 |
added_count = 0
|
| 128 |
for seq, score in potential_next_beams:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
|
| 138 |
finished_beams.extend(active_beams)
|
| 139 |
|
|
@@ -148,22 +180,27 @@ def beam_search_decode(
|
|
| 148 |
# Ensure seq_len is float for pow
|
| 149 |
return score.item() / (float(seq_len) ** length_penalty)
|
| 150 |
|
| 151 |
-
finished_beams.sort(key=get_score, reverse=True)
|
| 152 |
|
| 153 |
-
top_sequences = [
|
|
|
|
|
|
|
| 154 |
return top_sequences
|
| 155 |
|
| 156 |
except RuntimeError as e:
|
| 157 |
logging.error(f"Runtime error during beam search decode: {e}")
|
| 158 |
if "CUDA out of memory" in str(e):
|
| 159 |
-
gc.collect()
|
| 160 |
-
|
|
|
|
| 161 |
except Exception as e:
|
| 162 |
logging.error(f"Unexpected error during beam search decode: {e}", exc_info=True)
|
| 163 |
return []
|
| 164 |
|
|
|
|
| 165 |
# --- Translation Function (Moved from test_ckpt.py) ---
|
| 166 |
|
|
|
|
| 167 |
def translate(
|
| 168 |
model: pl.LightningModule,
|
| 169 |
src_sentence: str,
|
|
@@ -176,13 +213,13 @@ def translate(
|
|
| 176 |
pad_idx: int,
|
| 177 |
beam_width: int = 5,
|
| 178 |
n_best: int = 5,
|
| 179 |
-
length_penalty: float = 0.6
|
| 180 |
) -> list[str]:
|
| 181 |
"""
|
| 182 |
Translates a single SMILES string using beam search.
|
| 183 |
(Code copied and pasted from test_ckpt.py)
|
| 184 |
"""
|
| 185 |
-
model.eval()
|
| 186 |
translations = []
|
| 187 |
|
| 188 |
# --- Tokenize Source ---
|
|
@@ -191,17 +228,19 @@ def translate(
|
|
| 191 |
if not src_encoded or not src_encoded.ids:
|
| 192 |
logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}")
|
| 193 |
return ["[Encoding Error]"] * n_best
|
| 194 |
-
src_ids = src_encoded.ids[:max_len]
|
| 195 |
if not src_ids:
|
| 196 |
-
|
| 197 |
-
|
| 198 |
except Exception as e:
|
| 199 |
logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}")
|
| 200 |
return ["[Encoding Error]"] * n_best
|
| 201 |
|
| 202 |
# --- Prepare Input Tensor and Mask ---
|
| 203 |
-
src =
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
|
| 206 |
# --- Perform Beam Search Decoding ---
|
| 207 |
# Calls the beam_search_decode function defined above in this file
|
|
@@ -216,19 +255,21 @@ def translate(
|
|
| 216 |
device=device,
|
| 217 |
beam_width=beam_width,
|
| 218 |
n_best=n_best,
|
| 219 |
-
length_penalty=length_penalty
|
| 220 |
-
)
|
| 221 |
|
| 222 |
# --- Decode Generated Tokens ---
|
| 223 |
if not tgt_tokens_list:
|
| 224 |
-
|
| 225 |
-
|
| 226 |
|
| 227 |
for tgt_tokens_tensor in tgt_tokens_list:
|
| 228 |
if tgt_tokens_tensor.numel() > 0:
|
| 229 |
tgt_tokens = tgt_tokens_tensor.flatten().cpu().numpy().tolist()
|
| 230 |
try:
|
| 231 |
-
translation = iupac_tokenizer.decode(
|
|
|
|
|
|
|
| 232 |
translations.append(translation)
|
| 233 |
except Exception as e:
|
| 234 |
logging.error(f"Error decoding target tokens {tgt_tokens}: {e}")
|
|
@@ -247,7 +288,7 @@ def translate(
|
|
| 247 |
def load_model_and_tokenizers():
|
| 248 |
"""Loads tokenizers, config, and model from Hugging Face Hub."""
|
| 249 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
| 250 |
-
if model is not None:
|
| 251 |
logging.info("Model and tokenizers already loaded.")
|
| 252 |
return
|
| 253 |
|
|
@@ -259,42 +300,71 @@ def load_model_and_tokenizers():
|
|
| 259 |
# Download files from HF Hub
|
| 260 |
logging.info("Downloading files from Hugging Face Hub...")
|
| 261 |
try:
|
| 262 |
-
checkpoint_path = hf_hub_download(
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
logging.info("Files downloaded successfully.")
|
| 267 |
except Exception as e:
|
| 268 |
-
logging.error(
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
# Load config
|
| 272 |
logging.info("Loading configuration...")
|
| 273 |
try:
|
| 274 |
-
with open(config_path,
|
| 275 |
config = json.load(f)
|
| 276 |
logging.info("Configuration loaded.")
|
| 277 |
# --- Validate essential config keys ---
|
| 278 |
required_keys = [
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
]
|
| 283 |
missing_keys = [key for key in required_keys if key not in config]
|
| 284 |
if missing_keys:
|
| 285 |
-
raise ValueError(
|
|
|
|
|
|
|
| 286 |
# --- End Validation ---
|
| 287 |
except FileNotFoundError:
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
except json.JSONDecodeError as e:
|
| 291 |
logging.error(f"Error decoding JSON from config file {config_path}: {e}")
|
| 292 |
-
raise gr.Error(
|
|
|
|
|
|
|
| 293 |
except ValueError as e:
|
| 294 |
logging.error(f"Config validation error: {e}")
|
| 295 |
raise gr.Error(f"Config Error: {e}")
|
| 296 |
|
| 297 |
-
|
| 298 |
# Load tokenizers
|
| 299 |
logging.info("Loading tokenizers...")
|
| 300 |
try:
|
|
@@ -303,52 +373,80 @@ def load_model_and_tokenizers():
|
|
| 303 |
logging.info("Tokenizers loaded.")
|
| 304 |
# --- Validate Tokenizer Special Tokens ---
|
| 305 |
# Add more robust checks if necessary
|
| 306 |
-
if
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
# --- End Validation ---
|
| 315 |
except Exception as e:
|
| 316 |
-
logging.error(
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
# Load model
|
| 320 |
logging.info("Loading model from checkpoint...")
|
| 321 |
try:
|
| 322 |
model = SmilesIupacLitModule.load_from_checkpoint(
|
| 323 |
checkpoint_path,
|
| 324 |
-
src_vocab_size=config[
|
| 325 |
-
tgt_vocab_size=config[
|
| 326 |
map_location=device,
|
| 327 |
hparams_dict=config,
|
| 328 |
strict=False,
|
| 329 |
-
device="cpu"
|
| 330 |
)
|
| 331 |
model.to(device)
|
| 332 |
model.eval()
|
| 333 |
model.freeze()
|
| 334 |
-
logging.info(
|
|
|
|
|
|
|
| 335 |
|
| 336 |
except FileNotFoundError:
|
| 337 |
-
logging.error(
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
except Exception as e:
|
| 340 |
-
logging.error(
|
|
|
|
|
|
|
|
|
|
| 341 |
if "memory" in str(e).lower():
|
| 342 |
gc.collect()
|
| 343 |
if device == torch.device("cuda"):
|
| 344 |
torch.cuda.empty_cache()
|
| 345 |
-
raise gr.Error(
|
|
|
|
|
|
|
| 346 |
|
| 347 |
except gr.Error:
|
| 348 |
-
|
| 349 |
except Exception as e:
|
| 350 |
-
logging.error(
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
|
| 354 |
# --- Inference Function for Gradio (Unchanged, calls local translate) ---
|
|
@@ -361,15 +459,19 @@ def predict_iupac(smiles_string, beam_width, n_best, length_penalty):
|
|
| 361 |
if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]):
|
| 362 |
error_msg = "Error: Model or tokenizers not loaded properly. Check Space logs."
|
| 363 |
# Ensure n_best is int for range, default to 1 if conversion fails early
|
| 364 |
-
try:
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
| 367 |
|
| 368 |
if not smiles_string or not smiles_string.strip():
|
| 369 |
error_msg = "Error: Please enter a valid SMILES string."
|
| 370 |
-
try:
|
| 371 |
-
|
| 372 |
-
|
|
|
|
|
|
|
| 373 |
|
| 374 |
smiles_input = smiles_string.strip()
|
| 375 |
try:
|
|
@@ -377,10 +479,12 @@ def predict_iupac(smiles_string, beam_width, n_best, length_penalty):
|
|
| 377 |
n_best = int(n_best)
|
| 378 |
length_penalty = float(length_penalty)
|
| 379 |
except ValueError as e:
|
| 380 |
-
|
| 381 |
-
|
| 382 |
|
| 383 |
-
logging.info(
|
|
|
|
|
|
|
| 384 |
|
| 385 |
try:
|
| 386 |
# Calls the translate function defined *above in this file*
|
|
@@ -390,21 +494,23 @@ def predict_iupac(smiles_string, beam_width, n_best, length_penalty):
|
|
| 390 |
smiles_tokenizer=smiles_tokenizer,
|
| 391 |
iupac_tokenizer=iupac_tokenizer,
|
| 392 |
device=device,
|
| 393 |
-
max_len=config[
|
| 394 |
-
sos_idx=config[
|
| 395 |
-
eos_idx=config[
|
| 396 |
-
pad_idx=config[
|
| 397 |
beam_width=beam_width,
|
| 398 |
n_best=n_best,
|
| 399 |
-
length_penalty=length_penalty
|
| 400 |
)
|
| 401 |
logging.info(f"Predictions returned: {predicted_names}")
|
| 402 |
|
| 403 |
if not predicted_names:
|
| 404 |
-
|
| 405 |
else:
|
| 406 |
output_text = f"Input SMILES: {smiles_input}\n\nTop {len(predicted_names)} Predictions (Beam Width={beam_width}, Length Penalty={length_penalty:.2f}):\n"
|
| 407 |
-
output_text += "\n".join(
|
|
|
|
|
|
|
| 408 |
|
| 409 |
return output_text
|
| 410 |
|
|
@@ -416,21 +522,23 @@ def predict_iupac(smiles_string, beam_width, n_best, length_penalty):
|
|
| 416 |
if device == torch.device("cuda"):
|
| 417 |
torch.cuda.empty_cache()
|
| 418 |
error_msg += " (Potential OOM)"
|
| 419 |
-
return "\n".join([f"{i+1}. {error_msg}" for i in range(n_best)])
|
| 420 |
|
| 421 |
except Exception as e:
|
| 422 |
logging.error(f"Unexpected error during translation: {e}", exc_info=True)
|
| 423 |
error_msg = f"Unexpected Error during translation: {e}"
|
| 424 |
-
return "\n".join([f"{i+1}. {error_msg}" for i in range(n_best)])
|
| 425 |
|
| 426 |
|
| 427 |
# --- Load Model on App Start (Unchanged) ---
|
| 428 |
try:
|
| 429 |
load_model_and_tokenizers()
|
| 430 |
except gr.Error:
|
| 431 |
-
pass
|
| 432 |
except Exception as e:
|
| 433 |
-
logging.error(
|
|
|
|
|
|
|
| 434 |
gr.Error(f"Fatal Initialization Error: {e}. Check Space logs.")
|
| 435 |
|
| 436 |
|
|
@@ -445,16 +553,21 @@ Adjust beam search parameters below. Higher beam width explores more possibiliti
|
|
| 445 |
examples = [
|
| 446 |
["CCO", 5, 3, 0.6],
|
| 447 |
["C1=CC=CC=C1", 5, 3, 0.6],
|
| 448 |
-
["CC(=O)Oc1ccccc1C(=O)O", 5, 3, 0.6],
|
| 449 |
-
["CC(C)CC1=CC=C(C=C1)C(C)C(=O)O", 5, 3, 0.6],
|
| 450 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
["INVALID_SMILES", 5, 1, 0.6],
|
| 452 |
]
|
| 453 |
|
| 454 |
smiles_input = gr.Textbox(
|
| 455 |
label="SMILES String",
|
| 456 |
placeholder="Enter SMILES string here (e.g., CCO for Ethanol)",
|
| 457 |
-
lines=1
|
| 458 |
)
|
| 459 |
beam_width_input = gr.Slider(
|
| 460 |
minimum=1,
|
|
@@ -462,7 +575,7 @@ beam_width_input = gr.Slider(
|
|
| 462 |
value=5,
|
| 463 |
step=1,
|
| 464 |
label="Beam Width (k)",
|
| 465 |
-
info="Number of sequences to keep at each decoding step (higher = more exploration, slower)."
|
| 466 |
)
|
| 467 |
n_best_input = gr.Slider(
|
| 468 |
minimum=1,
|
|
@@ -470,7 +583,7 @@ n_best_input = gr.Slider(
|
|
| 470 |
value=3,
|
| 471 |
step=1,
|
| 472 |
label="Number of Results (n_best)",
|
| 473 |
-
info="How many top-scoring sequences to return (must be <= Beam Width)."
|
| 474 |
)
|
| 475 |
length_penalty_input = gr.Slider(
|
| 476 |
minimum=0.0,
|
|
@@ -478,12 +591,10 @@ length_penalty_input = gr.Slider(
|
|
| 478 |
value=0.6,
|
| 479 |
step=0.1,
|
| 480 |
label="Length Penalty (alpha)",
|
| 481 |
-
info="Controls preference for sequence length. >1 prefers longer, <1 prefers shorter, 0 no penalty."
|
| 482 |
)
|
| 483 |
output_text = gr.Textbox(
|
| 484 |
-
label="Predicted IUPAC Name(s)",
|
| 485 |
-
lines=5,
|
| 486 |
-
show_copy_button=True
|
| 487 |
)
|
| 488 |
|
| 489 |
iface = gr.Interface(
|
|
@@ -495,7 +606,7 @@ iface = gr.Interface(
|
|
| 495 |
examples=examples,
|
| 496 |
allow_flagging="never",
|
| 497 |
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"),
|
| 498 |
-
article="Note: Translation quality depends on the training data and model size. Complex molecules might yield less accurate results."
|
| 499 |
)
|
| 500 |
|
| 501 |
# --- Launch the App (Unchanged) ---
|
|
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import torch.nn.functional as F # <--- Added import
|
| 5 |
+
import pytorch_lightning as pl # <--- Added import (needed for type hints, model access)
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
import logging
|
| 9 |
from tokenizers import Tokenizer
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
+
import gc # For garbage collection on potential OOM
|
| 12 |
+
import math # Needed for PositionalEncoding if moved here (or keep in enhanced_trainer)
|
| 13 |
|
| 14 |
# --- Configuration ---
|
| 15 |
MODEL_REPO_ID = "AdrianM0/smiles-to-iupac-translator"
|
|
|
|
| 20 |
# --- End Configuration ---
|
| 21 |
|
| 22 |
# --- Logging ---
|
| 23 |
+
logging.basicConfig(
|
| 24 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 25 |
+
)
|
| 26 |
|
| 27 |
# --- Load Helper Code (Only Model Definition Needed) ---
|
| 28 |
try:
|
| 29 |
# We only need the LightningModule definition and the mask function now
|
| 30 |
from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask
|
| 31 |
+
|
| 32 |
logging.info("Successfully imported from enhanced_trainer.py.")
|
| 33 |
|
| 34 |
# We will define beam_search_decode and translate locally in this file
|
| 35 |
# REMOVED: from test_ckpt import beam_search_decode, translate
|
| 36 |
|
| 37 |
except ImportError as e:
|
| 38 |
+
logging.error(
|
| 39 |
+
f"Failed to import helper code from enhanced_trainer.py: {e}. Make sure enhanced_trainer.py is in the root of the Hugging Face repo '{MODEL_REPO_ID}'."
|
| 40 |
+
)
|
| 41 |
+
gr.Error(
|
| 42 |
+
f"Initialization Error: Could not load necessary Python modules (enhanced_trainer.py). Check Space logs. Error: {e}"
|
| 43 |
+
)
|
| 44 |
exit()
|
| 45 |
except Exception as e:
|
| 46 |
+
logging.error(
|
| 47 |
+
f"An unexpected error occurred during helper code import: {e}", exc_info=True
|
| 48 |
+
)
|
| 49 |
+
gr.Error(
|
| 50 |
+
f"Initialization Error: An unexpected error occurred loading helper modules. Check Space logs. Error: {e}"
|
| 51 |
+
)
|
| 52 |
exit()
|
| 53 |
|
| 54 |
# --- Global Variables (Load Model Once) ---
|
| 55 |
+
model: pl.LightningModule | None = None # Added type hint
|
| 56 |
smiles_tokenizer: Tokenizer | None = None
|
| 57 |
iupac_tokenizer: Tokenizer | None = None
|
| 58 |
device: torch.device | None = None
|
|
|
|
| 60 |
|
| 61 |
# --- Beam Search Decoding Logic (Moved from test_ckpt.py) ---
|
| 62 |
|
| 63 |
+
|
| 64 |
def beam_search_decode(
|
| 65 |
model: pl.LightningModule,
|
| 66 |
src: torch.Tensor,
|
|
|
|
| 68 |
max_len: int,
|
| 69 |
sos_idx: int,
|
| 70 |
eos_idx: int,
|
| 71 |
+
pad_idx: int, # Needed for padding mask check if src has padding
|
| 72 |
device: torch.device,
|
| 73 |
beam_width: int = 5,
|
| 74 |
+
n_best: int = 5, # Number of top sequences to return
|
| 75 |
+
length_penalty: float = 0.6, # Alpha for length normalization (0=no penalty, 1=full penalty)
|
| 76 |
) -> list[torch.Tensor]:
|
| 77 |
"""
|
| 78 |
Performs beam search decoding using the LightningModule's model.
|
|
|
|
| 80 |
"""
|
| 81 |
# Ensure model is in eval mode (redundant if called after model.eval(), but safe)
|
| 82 |
model.eval()
|
| 83 |
+
transformer_model = model.model # Access the underlying Seq2SeqTransformer
|
| 84 |
+
n_best = min(n_best, beam_width) # Cannot return more than beam_width sequences
|
| 85 |
|
| 86 |
try:
|
| 87 |
with torch.no_grad():
|
| 88 |
# --- Encode Source ---
|
| 89 |
+
memory = transformer_model.encode(
|
| 90 |
+
src, src_padding_mask
|
| 91 |
+
) # [1, src_len, emb_size]
|
| 92 |
memory = memory.to(device)
|
| 93 |
# Ensure memory_key_padding_mask is also on the correct device for decode
|
| 94 |
+
memory_key_padding_mask = src_padding_mask.to(memory.device) # [1, src_len]
|
| 95 |
|
| 96 |
# --- Initialize Beams ---
|
| 97 |
+
initial_beam_seq = torch.ones(1, 1, dtype=torch.long, device=device).fill_(
|
| 98 |
+
sos_idx
|
| 99 |
+
) # [1, 1]
|
| 100 |
+
initial_beam_score = torch.zeros(1, dtype=torch.float, device=device) # [1]
|
| 101 |
active_beams = [(initial_beam_seq, initial_beam_score)]
|
| 102 |
finished_beams = []
|
| 103 |
|
|
|
|
| 112 |
finished_beams.append((current_seq, current_score))
|
| 113 |
continue
|
| 114 |
|
| 115 |
+
tgt_input = current_seq # [1, current_len]
|
| 116 |
tgt_seq_len = tgt_input.shape[1]
|
| 117 |
+
tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to(
|
| 118 |
+
device
|
| 119 |
+
) # [curr_len, curr_len]
|
| 120 |
+
tgt_padding_mask = torch.zeros(
|
| 121 |
+
tgt_input.shape, dtype=torch.bool, device=device
|
| 122 |
+
) # [1, curr_len]
|
| 123 |
|
| 124 |
decoder_output = transformer_model.decode(
|
| 125 |
tgt=tgt_input,
|
| 126 |
memory=memory,
|
| 127 |
tgt_mask=tgt_mask,
|
| 128 |
tgt_padding_mask=tgt_padding_mask,
|
| 129 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
| 130 |
+
) # [1, curr_len, emb_size]
|
| 131 |
|
| 132 |
+
next_token_logits = transformer_model.generator(
|
| 133 |
+
decoder_output[:, -1, :]
|
| 134 |
+
) # [1, tgt_vocab_size]
|
| 135 |
+
log_probs = F.log_softmax(
|
| 136 |
+
next_token_logits, dim=-1
|
| 137 |
+
) # [1, tgt_vocab_size]
|
| 138 |
|
| 139 |
+
topk_log_probs, topk_indices = torch.topk(
|
| 140 |
+
log_probs + current_score, beam_width, dim=-1
|
| 141 |
+
)
|
| 142 |
|
| 143 |
for i in range(beam_width):
|
| 144 |
next_token_id = topk_indices[0, i].item()
|
| 145 |
+
next_score = topk_log_probs[0, i].reshape(
|
| 146 |
+
1
|
| 147 |
+
) # Keep as tensor [1]
|
| 148 |
+
next_token_tensor = torch.tensor(
|
| 149 |
+
[[next_token_id]], dtype=torch.long, device=device
|
| 150 |
+
) # [1, 1]
|
| 151 |
+
new_seq = torch.cat(
|
| 152 |
+
[current_seq, next_token_tensor], dim=1
|
| 153 |
+
) # [1, current_len + 1]
|
| 154 |
potential_next_beams.append((new_seq, next_score))
|
| 155 |
|
| 156 |
potential_next_beams.sort(key=lambda x: x[1].item(), reverse=True)
|
|
|
|
| 158 |
active_beams = []
|
| 159 |
added_count = 0
|
| 160 |
for seq, score in potential_next_beams:
|
| 161 |
+
is_finished = seq[0, -1].item() == eos_idx
|
| 162 |
+
if is_finished:
|
| 163 |
+
finished_beams.append((seq, score))
|
| 164 |
+
elif added_count < beam_width:
|
| 165 |
+
active_beams.append((seq, score))
|
| 166 |
+
added_count += 1
|
| 167 |
+
elif added_count >= beam_width:
|
| 168 |
+
break
|
| 169 |
|
| 170 |
finished_beams.extend(active_beams)
|
| 171 |
|
|
|
|
| 180 |
# Ensure seq_len is float for pow
|
| 181 |
return score.item() / (float(seq_len) ** length_penalty)
|
| 182 |
|
| 183 |
+
finished_beams.sort(key=get_score, reverse=True) # Higher score is better
|
| 184 |
|
| 185 |
+
top_sequences = [
|
| 186 |
+
seq[:, 1:] for seq, score in finished_beams[:n_best]
|
| 187 |
+
] # seq shape [1, len] -> [1, len-1]
|
| 188 |
return top_sequences
|
| 189 |
|
| 190 |
except RuntimeError as e:
|
| 191 |
logging.error(f"Runtime error during beam search decode: {e}")
|
| 192 |
if "CUDA out of memory" in str(e):
|
| 193 |
+
gc.collect()
|
| 194 |
+
torch.cuda.empty_cache()
|
| 195 |
+
return [] # Return empty list on error
|
| 196 |
except Exception as e:
|
| 197 |
logging.error(f"Unexpected error during beam search decode: {e}", exc_info=True)
|
| 198 |
return []
|
| 199 |
|
| 200 |
+
|
| 201 |
# --- Translation Function (Moved from test_ckpt.py) ---
|
| 202 |
|
| 203 |
+
|
| 204 |
def translate(
|
| 205 |
model: pl.LightningModule,
|
| 206 |
src_sentence: str,
|
|
|
|
| 213 |
pad_idx: int,
|
| 214 |
beam_width: int = 5,
|
| 215 |
n_best: int = 5,
|
| 216 |
+
length_penalty: float = 0.6,
|
| 217 |
) -> list[str]:
|
| 218 |
"""
|
| 219 |
Translates a single SMILES string using beam search.
|
| 220 |
(Code copied and pasted from test_ckpt.py)
|
| 221 |
"""
|
| 222 |
+
model.eval() # Ensure model is in eval mode
|
| 223 |
translations = []
|
| 224 |
|
| 225 |
# --- Tokenize Source ---
|
|
|
|
| 228 |
if not src_encoded or not src_encoded.ids:
|
| 229 |
logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}")
|
| 230 |
return ["[Encoding Error]"] * n_best
|
| 231 |
+
src_ids = src_encoded.ids[:max_len] # Truncate source
|
| 232 |
if not src_ids:
|
| 233 |
+
logging.warning(f"Source empty after truncation: {src_sentence}")
|
| 234 |
+
return ["[Encoding Error - Empty Src]"] * n_best
|
| 235 |
except Exception as e:
|
| 236 |
logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}")
|
| 237 |
return ["[Encoding Error]"] * n_best
|
| 238 |
|
| 239 |
# --- Prepare Input Tensor and Mask ---
|
| 240 |
+
src = (
|
| 241 |
+
torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(device)
|
| 242 |
+
) # [1, src_len]
|
| 243 |
+
src_padding_mask = (src == pad_idx).to(device) # [1, src_len]
|
| 244 |
|
| 245 |
# --- Perform Beam Search Decoding ---
|
| 246 |
# Calls the beam_search_decode function defined above in this file
|
|
|
|
| 255 |
device=device,
|
| 256 |
beam_width=beam_width,
|
| 257 |
n_best=n_best,
|
| 258 |
+
length_penalty=length_penalty,
|
| 259 |
+
) # Returns list of tensors
|
| 260 |
|
| 261 |
# --- Decode Generated Tokens ---
|
| 262 |
if not tgt_tokens_list:
|
| 263 |
+
logging.warning(f"Beam search returned empty list for SMILES: {src_sentence}")
|
| 264 |
+
return ["[Decoding Error - Empty Output]"] * n_best
|
| 265 |
|
| 266 |
for tgt_tokens_tensor in tgt_tokens_list:
|
| 267 |
if tgt_tokens_tensor.numel() > 0:
|
| 268 |
tgt_tokens = tgt_tokens_tensor.flatten().cpu().numpy().tolist()
|
| 269 |
try:
|
| 270 |
+
translation = iupac_tokenizer.decode(
|
| 271 |
+
tgt_tokens, skip_special_tokens=True
|
| 272 |
+
)
|
| 273 |
translations.append(translation)
|
| 274 |
except Exception as e:
|
| 275 |
logging.error(f"Error decoding target tokens {tgt_tokens}: {e}")
|
|
|
|
| 288 |
def load_model_and_tokenizers():
|
| 289 |
"""Loads tokenizers, config, and model from Hugging Face Hub."""
|
| 290 |
global model, smiles_tokenizer, iupac_tokenizer, device, config
|
| 291 |
+
if model is not None: # Already loaded
|
| 292 |
logging.info("Model and tokenizers already loaded.")
|
| 293 |
return
|
| 294 |
|
|
|
|
| 300 |
# Download files from HF Hub
|
| 301 |
logging.info("Downloading files from Hugging Face Hub...")
|
| 302 |
try:
|
| 303 |
+
checkpoint_path = hf_hub_download(
|
| 304 |
+
repo_id=MODEL_REPO_ID, filename=CHECKPOINT_FILENAME
|
| 305 |
+
)
|
| 306 |
+
smiles_tokenizer_path = hf_hub_download(
|
| 307 |
+
repo_id=MODEL_REPO_ID, filename=SMILES_TOKENIZER_FILENAME
|
| 308 |
+
)
|
| 309 |
+
iupac_tokenizer_path = hf_hub_download(
|
| 310 |
+
repo_id=MODEL_REPO_ID, filename=IUPAC_TOKENIZER_FILENAME
|
| 311 |
+
)
|
| 312 |
+
config_path = hf_hub_download(
|
| 313 |
+
repo_id=MODEL_REPO_ID, filename=CONFIG_FILENAME
|
| 314 |
+
)
|
| 315 |
logging.info("Files downloaded successfully.")
|
| 316 |
except Exception as e:
|
| 317 |
+
logging.error(
|
| 318 |
+
f"Failed to download files from {MODEL_REPO_ID}. Check filenames and repo status. Error: {e}",
|
| 319 |
+
exc_info=True,
|
| 320 |
+
)
|
| 321 |
+
raise gr.Error(
|
| 322 |
+
f"Download Error: Could not download required files from {MODEL_REPO_ID}. Check Space logs. Error: {e}"
|
| 323 |
+
)
|
| 324 |
|
| 325 |
# Load config
|
| 326 |
logging.info("Loading configuration...")
|
| 327 |
try:
|
| 328 |
+
with open(config_path, "r") as f:
|
| 329 |
config = json.load(f)
|
| 330 |
logging.info("Configuration loaded.")
|
| 331 |
# --- Validate essential config keys ---
|
| 332 |
required_keys = [
|
| 333 |
+
"src_vocab_size",
|
| 334 |
+
"tgt_vocab_size",
|
| 335 |
+
"emb_size",
|
| 336 |
+
"nhead",
|
| 337 |
+
"ffn_hid_dim",
|
| 338 |
+
"num_encoder_layers",
|
| 339 |
+
"num_decoder_layers",
|
| 340 |
+
"dropout",
|
| 341 |
+
"max_len",
|
| 342 |
+
"bos_token_id",
|
| 343 |
+
"eos_token_id",
|
| 344 |
+
"pad_token_id",
|
| 345 |
]
|
| 346 |
missing_keys = [key for key in required_keys if key not in config]
|
| 347 |
if missing_keys:
|
| 348 |
+
raise ValueError(
|
| 349 |
+
f"Config file '{CONFIG_FILENAME}' is missing required keys: {missing_keys}"
|
| 350 |
+
)
|
| 351 |
# --- End Validation ---
|
| 352 |
except FileNotFoundError:
|
| 353 |
+
logging.error(
|
| 354 |
+
f"Config file not found locally after download attempt: {config_path}"
|
| 355 |
+
)
|
| 356 |
+
raise gr.Error(
|
| 357 |
+
f"Config Error: Config file '{CONFIG_FILENAME}' not found. Check file exists in repo."
|
| 358 |
+
)
|
| 359 |
except json.JSONDecodeError as e:
|
| 360 |
logging.error(f"Error decoding JSON from config file {config_path}: {e}")
|
| 361 |
+
raise gr.Error(
|
| 362 |
+
f"Config Error: Could not parse '{CONFIG_FILENAME}'. Check its format. Error: {e}"
|
| 363 |
+
)
|
| 364 |
except ValueError as e:
|
| 365 |
logging.error(f"Config validation error: {e}")
|
| 366 |
raise gr.Error(f"Config Error: {e}")
|
| 367 |
|
|
|
|
| 368 |
# Load tokenizers
|
| 369 |
logging.info("Loading tokenizers...")
|
| 370 |
try:
|
|
|
|
| 373 |
logging.info("Tokenizers loaded.")
|
| 374 |
# --- Validate Tokenizer Special Tokens ---
|
| 375 |
# Add more robust checks if necessary
|
| 376 |
+
if (
|
| 377 |
+
smiles_tokenizer.token_to_id("<pad>") != config["pad_token_id"]
|
| 378 |
+
or smiles_tokenizer.token_to_id("<unk>") is None
|
| 379 |
+
):
|
| 380 |
+
logging.warning(
|
| 381 |
+
"SMILES tokenizer special tokens might not match config or are missing."
|
| 382 |
+
)
|
| 383 |
+
if (
|
| 384 |
+
iupac_tokenizer.token_to_id("<pad>") != config["pad_token_id"]
|
| 385 |
+
or iupac_tokenizer.token_to_id("<sos>") != config["bos_token_id"]
|
| 386 |
+
or iupac_tokenizer.token_to_id("<eos>") != config["eos_token_id"]
|
| 387 |
+
or iupac_tokenizer.token_to_id("<unk>") is None
|
| 388 |
+
):
|
| 389 |
+
logging.warning(
|
| 390 |
+
"IUPAC tokenizer special tokens might not match config or are missing."
|
| 391 |
+
)
|
| 392 |
# --- End Validation ---
|
| 393 |
except Exception as e:
|
| 394 |
+
logging.error(
|
| 395 |
+
f"Failed to load tokenizers from {smiles_tokenizer_path} or {iupac_tokenizer_path}: {e}",
|
| 396 |
+
exc_info=True,
|
| 397 |
+
)
|
| 398 |
+
raise gr.Error(
|
| 399 |
+
f"Tokenizer Error: Could not load tokenizer files. Check Space logs. Error: {e}"
|
| 400 |
+
)
|
| 401 |
|
| 402 |
# Load model
|
| 403 |
logging.info("Loading model from checkpoint...")
|
| 404 |
try:
|
| 405 |
model = SmilesIupacLitModule.load_from_checkpoint(
|
| 406 |
checkpoint_path,
|
| 407 |
+
src_vocab_size=config["src_vocab_size"],
|
| 408 |
+
tgt_vocab_size=config["tgt_vocab_size"],
|
| 409 |
map_location=device,
|
| 410 |
hparams_dict=config,
|
| 411 |
strict=False,
|
| 412 |
+
device="cpu",
|
| 413 |
)
|
| 414 |
model.to(device)
|
| 415 |
model.eval()
|
| 416 |
model.freeze()
|
| 417 |
+
logging.info(
|
| 418 |
+
"Model loaded successfully, set to eval mode, frozen, and moved to device."
|
| 419 |
+
)
|
| 420 |
|
| 421 |
except FileNotFoundError:
|
| 422 |
+
logging.error(
|
| 423 |
+
f"Checkpoint file not found locally after download attempt: {checkpoint_path}"
|
| 424 |
+
)
|
| 425 |
+
raise gr.Error(
|
| 426 |
+
f"Model Error: Checkpoint file '{CHECKPOINT_FILENAME}' not found."
|
| 427 |
+
)
|
| 428 |
except Exception as e:
|
| 429 |
+
logging.error(
|
| 430 |
+
f"Error loading model from checkpoint {checkpoint_path}: {e}",
|
| 431 |
+
exc_info=True,
|
| 432 |
+
)
|
| 433 |
if "memory" in str(e).lower():
|
| 434 |
gc.collect()
|
| 435 |
if device == torch.device("cuda"):
|
| 436 |
torch.cuda.empty_cache()
|
| 437 |
+
raise gr.Error(
|
| 438 |
+
f"Model Error: Failed to load model checkpoint. Check Space logs. Error: {e}"
|
| 439 |
+
)
|
| 440 |
|
| 441 |
except gr.Error:
|
| 442 |
+
raise
|
| 443 |
except Exception as e:
|
| 444 |
+
logging.error(
|
| 445 |
+
f"Unexpected error during model/tokenizer loading: {e}", exc_info=True
|
| 446 |
+
)
|
| 447 |
+
raise gr.Error(
|
| 448 |
+
f"Initialization Error: An unexpected error occurred. Check Space logs. Error: {e}"
|
| 449 |
+
)
|
| 450 |
|
| 451 |
|
| 452 |
# --- Inference Function for Gradio (Unchanged, calls local translate) ---
|
|
|
|
| 459 |
if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]):
|
| 460 |
error_msg = "Error: Model or tokenizers not loaded properly. Check Space logs."
|
| 461 |
# Ensure n_best is int for range, default to 1 if conversion fails early
|
| 462 |
+
try:
|
| 463 |
+
n_best_int = int(n_best)
|
| 464 |
+
except:
|
| 465 |
+
n_best_int = 1
|
| 466 |
+
return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best_int)])
|
| 467 |
|
| 468 |
if not smiles_string or not smiles_string.strip():
|
| 469 |
error_msg = "Error: Please enter a valid SMILES string."
|
| 470 |
+
try:
|
| 471 |
+
n_best_int = int(n_best)
|
| 472 |
+
except:
|
| 473 |
+
n_best_int = 1
|
| 474 |
+
return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best_int)])
|
| 475 |
|
| 476 |
smiles_input = smiles_string.strip()
|
| 477 |
try:
|
|
|
|
| 479 |
n_best = int(n_best)
|
| 480 |
length_penalty = float(length_penalty)
|
| 481 |
except ValueError as e:
|
| 482 |
+
error_msg = f"Error: Invalid input parameter type ({e})."
|
| 483 |
+
return f"1. {error_msg}" # Cannot determine n_best here
|
| 484 |
|
| 485 |
+
logging.info(
|
| 486 |
+
f"Translating SMILES: '{smiles_input}' (Beam={beam_width}, N={n_best}, Penalty={length_penalty})"
|
| 487 |
+
)
|
| 488 |
|
| 489 |
try:
|
| 490 |
# Calls the translate function defined *above in this file*
|
|
|
|
| 494 |
smiles_tokenizer=smiles_tokenizer,
|
| 495 |
iupac_tokenizer=iupac_tokenizer,
|
| 496 |
device=device,
|
| 497 |
+
max_len=config["max_len"],
|
| 498 |
+
sos_idx=config["bos_token_id"],
|
| 499 |
+
eos_idx=config["eos_token_id"],
|
| 500 |
+
pad_idx=config["pad_token_id"],
|
| 501 |
beam_width=beam_width,
|
| 502 |
n_best=n_best,
|
| 503 |
+
length_penalty=length_penalty,
|
| 504 |
)
|
| 505 |
logging.info(f"Predictions returned: {predicted_names}")
|
| 506 |
|
| 507 |
if not predicted_names:
|
| 508 |
+
output_text = f"Input SMILES: {smiles_input}\n\nNo predictions generated."
|
| 509 |
else:
|
| 510 |
output_text = f"Input SMILES: {smiles_input}\n\nTop {len(predicted_names)} Predictions (Beam Width={beam_width}, Length Penalty={length_penalty:.2f}):\n"
|
| 511 |
+
output_text += "\n".join(
|
| 512 |
+
[f"{i + 1}. {name}" for i, name in enumerate(predicted_names)]
|
| 513 |
+
)
|
| 514 |
|
| 515 |
return output_text
|
| 516 |
|
|
|
|
| 522 |
if device == torch.device("cuda"):
|
| 523 |
torch.cuda.empty_cache()
|
| 524 |
error_msg += " (Potential OOM)"
|
| 525 |
+
return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best)])
|
| 526 |
|
| 527 |
except Exception as e:
|
| 528 |
logging.error(f"Unexpected error during translation: {e}", exc_info=True)
|
| 529 |
error_msg = f"Unexpected Error during translation: {e}"
|
| 530 |
+
return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best)])
|
| 531 |
|
| 532 |
|
| 533 |
# --- Load Model on App Start (Unchanged) ---
|
| 534 |
try:
|
| 535 |
load_model_and_tokenizers()
|
| 536 |
except gr.Error:
|
| 537 |
+
pass # Error already raised for Gradio UI
|
| 538 |
except Exception as e:
|
| 539 |
+
logging.error(
|
| 540 |
+
f"Critical error during initial model loading sequence: {e}", exc_info=True
|
| 541 |
+
)
|
| 542 |
gr.Error(f"Fatal Initialization Error: {e}. Check Space logs.")
|
| 543 |
|
| 544 |
|
|
|
|
| 553 |
examples = [
|
| 554 |
["CCO", 5, 3, 0.6],
|
| 555 |
["C1=CC=CC=C1", 5, 3, 0.6],
|
| 556 |
+
["CC(=O)Oc1ccccc1C(=O)O", 5, 3, 0.6], # Aspirin
|
| 557 |
+
["CC(C)CC1=CC=C(C=C1)C(C)C(=O)O", 5, 3, 0.6], # Ibuprofen
|
| 558 |
+
[
|
| 559 |
+
"CC(=O)O[C@@H]1C[C@@H]2[C@]3(CCCC([C@@H]3CC[C@]2([C@H]4[C@]1([C@H]5[C@@H](OC(=O)C5=CC4)OC)C)C)(C)C)C",
|
| 560 |
+
5,
|
| 561 |
+
1,
|
| 562 |
+
0.6,
|
| 563 |
+
], # Complex example
|
| 564 |
["INVALID_SMILES", 5, 1, 0.6],
|
| 565 |
]
|
| 566 |
|
| 567 |
smiles_input = gr.Textbox(
|
| 568 |
label="SMILES String",
|
| 569 |
placeholder="Enter SMILES string here (e.g., CCO for Ethanol)",
|
| 570 |
+
lines=1,
|
| 571 |
)
|
| 572 |
beam_width_input = gr.Slider(
|
| 573 |
minimum=1,
|
|
|
|
| 575 |
value=5,
|
| 576 |
step=1,
|
| 577 |
label="Beam Width (k)",
|
| 578 |
+
info="Number of sequences to keep at each decoding step (higher = more exploration, slower).",
|
| 579 |
)
|
| 580 |
n_best_input = gr.Slider(
|
| 581 |
minimum=1,
|
|
|
|
| 583 |
value=3,
|
| 584 |
step=1,
|
| 585 |
label="Number of Results (n_best)",
|
| 586 |
+
info="How many top-scoring sequences to return (must be <= Beam Width).",
|
| 587 |
)
|
| 588 |
length_penalty_input = gr.Slider(
|
| 589 |
minimum=0.0,
|
|
|
|
| 591 |
value=0.6,
|
| 592 |
step=0.1,
|
| 593 |
label="Length Penalty (alpha)",
|
| 594 |
+
info="Controls preference for sequence length. >1 prefers longer, <1 prefers shorter, 0 no penalty.",
|
| 595 |
)
|
| 596 |
output_text = gr.Textbox(
|
| 597 |
+
label="Predicted IUPAC Name(s)", lines=5, show_copy_button=True
|
|
|
|
|
|
|
| 598 |
)
|
| 599 |
|
| 600 |
iface = gr.Interface(
|
|
|
|
| 606 |
examples=examples,
|
| 607 |
allow_flagging="never",
|
| 608 |
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"),
|
| 609 |
+
article="Note: Translation quality depends on the training data and model size. Complex molecules might yield less accurate results.",
|
| 610 |
)
|
| 611 |
|
| 612 |
# --- Launch the App (Unchanged) ---
|