Upload 2 files
Browse files- app.py +124 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import required libraries
|
| 2 |
+
import os
|
| 3 |
+
import keras
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# Function to safely load the models
|
| 10 |
+
def load_model_safely(path: str):
|
| 11 |
+
if not os.path.isfile(path) or not path.endswith('.keras'):
|
| 12 |
+
raise FileNotFoundError(f"The file '{path}' does not exist or is not a .keras file.")
|
| 13 |
+
return keras.saving.load_model(path)
|
| 14 |
+
|
| 15 |
+
# Retrieve the current directory and specify model paths
|
| 16 |
+
current_dir = os.getcwd() # Ensure correct initial directory
|
| 17 |
+
model_paths = {
|
| 18 |
+
'CNN': os.path.join(current_dir, 'models', 'cnn_model.keras'),
|
| 19 |
+
'VGG19': os.path.join(current_dir, 'models', 'vgg19_model.keras'),
|
| 20 |
+
'ResNet50': os.path.join(current_dir, 'models', 'resnet50_model.keras'),
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
# Load models and handle potential exceptions
|
| 24 |
+
models = {}
|
| 25 |
+
for name, path in model_paths.items():
|
| 26 |
+
try:
|
| 27 |
+
models[name] = load_model_safely(path)
|
| 28 |
+
except Exception as e:
|
| 29 |
+
st.error(f"Error loading model {name} from {path}: {str(e)}")
|
| 30 |
+
|
| 31 |
+
# Define the class labels
|
| 32 |
+
classes = { 0:'Speed limit (20km/h)', 1:'Speed limit (30km/h)', 2:'Speed limit (50km/h)',
|
| 33 |
+
3:'Speed limit (60km/h)', 4:'Speed limit (70km/h)', 5:'Speed limit (80km/h)',
|
| 34 |
+
6:'End of speed limit (80km/h)', 7:'Speed limit (100km/h)', 8:'Speed limit (120km/h)',
|
| 35 |
+
9:'No passing', 10:'No passing veh over 3.5 tons', 11:'Right-of-way at intersection',
|
| 36 |
+
12:'Priority road', 13:'Yield', 14:'Stop', 15:'No vehicles',
|
| 37 |
+
16:'Veh > 3.5 tons prohibited', 17:'No entry', 18:'General caution',
|
| 38 |
+
19:'Dangerous curve left', 20:'Dangerous curve right', 21:'Double curve',
|
| 39 |
+
22:'Bumpy road', 23:'Slippery road', 24:'Road narrows on the right',
|
| 40 |
+
25:'Road work', 26:'Traffic signals', 27:'Pedestrians', 28:'Children crossing',
|
| 41 |
+
29:'Bicycles crossing', 30:'Beware of ice/snow', 31:'Wild animals crossing',
|
| 42 |
+
32:'End speed + passing limits', 33:'Turn right ahead', 34:'Turn left ahead',
|
| 43 |
+
35:'Ahead only', 36:'Go straight or right', 37:'Go straight or left',
|
| 44 |
+
38:'Keep right', 39:'Keep left', 40:'Roundabout mandatory',
|
| 45 |
+
41:'End of no passing', 42:'End no passing veh > 3.5 tons' }
|
| 46 |
+
|
| 47 |
+
# Function to preprocess the image and predict the class
|
| 48 |
+
def preprocess_and_predict(image: Image.Image, size=(50, 50)) -> pd.DataFrame:
|
| 49 |
+
img_resized = image.resize(size)
|
| 50 |
+
img_array = np.array(img_resized).astype(np.float32) / 255.0
|
| 51 |
+
img_array = np.expand_dims(img_array, axis=0) # Shape (1, 50, 50, 3)
|
| 52 |
+
|
| 53 |
+
predictions = []
|
| 54 |
+
for name, model in models.items():
|
| 55 |
+
predicted_class_index = np.argmax(model.predict(img_array), axis=-1)[0]
|
| 56 |
+
predictions.append({'Model': name, 'Predicted Label': classes[predicted_class_index]})
|
| 57 |
+
|
| 58 |
+
return pd.DataFrame(predictions)
|
| 59 |
+
|
| 60 |
+
# Import Example images
|
| 61 |
+
images_dir = os.path.join(current_dir, 'images')
|
| 62 |
+
|
| 63 |
+
if os.path.exists(images_dir):
|
| 64 |
+
# Create a list of images and their corresponding classes
|
| 65 |
+
image_list = [img for img in os.listdir(images_dir) if img.lower().endswith('.png')]
|
| 66 |
+
image_dict = {classes[int(img.split('.')[0])] : os.path.join(images_dir, img) for img in image_list}
|
| 67 |
+
else:
|
| 68 |
+
st.error(f"The images directory does not exist: {images_dir}")
|
| 69 |
+
|
| 70 |
+
# Streamlit UI setup
|
| 71 |
+
st.set_page_config(page_title="Traffic Sign Detection App", page_icon="🚦", layout="wide")
|
| 72 |
+
st.title("🚦 Traffic Sign Recognition using CNN, VGG19, ResNet50")
|
| 73 |
+
st.markdown("Upload a traffic sign image or choose an example from below to get the recognition result.")
|
| 74 |
+
st.markdown("---")
|
| 75 |
+
|
| 76 |
+
# Sidebar for image upload and selection
|
| 77 |
+
st.sidebar.header("Input Options")
|
| 78 |
+
uploaded_file = st.sidebar.file_uploader("Upload an image (JPG, JPEG, PNG)", type=["jpg", "jpeg", "png"])
|
| 79 |
+
|
| 80 |
+
# Select an example image
|
| 81 |
+
selected_example = st.sidebar.selectbox("Or select an example image:", list(image_dict.keys()))
|
| 82 |
+
if selected_example:
|
| 83 |
+
example_image_path = image_dict[selected_example]
|
| 84 |
+
|
| 85 |
+
# Initialize a variable to hold the image for prediction
|
| 86 |
+
image_to_predict = None
|
| 87 |
+
|
| 88 |
+
# Check if user uploaded an image or selected an example image
|
| 89 |
+
if uploaded_file is not None:
|
| 90 |
+
image_to_predict = Image.open(uploaded_file)
|
| 91 |
+
st.image(image_to_predict.resize((256, 256)), caption='Uploaded Image', use_container_width=False, output_format="auto")
|
| 92 |
+
elif selected_example:
|
| 93 |
+
image_to_predict = Image.open(example_image_path)
|
| 94 |
+
st.image(image_to_predict.resize((256, 256)), caption='Example Image', use_container_width=False, output_format="auto")
|
| 95 |
+
|
| 96 |
+
# Add a predict button
|
| 97 |
+
if st.sidebar.button("🚀 Predict", key="predict_button") and image_to_predict is not None:
|
| 98 |
+
# Run prediction
|
| 99 |
+
st.write("Predicting ...")
|
| 100 |
+
results = preprocess_and_predict(image_to_predict)
|
| 101 |
+
|
| 102 |
+
# Display results
|
| 103 |
+
st.write("### Prediction Results")
|
| 104 |
+
|
| 105 |
+
# Style the output dataframe
|
| 106 |
+
st.dataframe(results)
|
| 107 |
+
|
| 108 |
+
# Add some custom CSS for better styling
|
| 109 |
+
st.markdown("""
|
| 110 |
+
<style>
|
| 111 |
+
.stButton > button:hover {
|
| 112 |
+
background-color: #0052cc; /* Darker blue on hover */
|
| 113 |
+
}
|
| 114 |
+
.stDataframe {
|
| 115 |
+
border: 1px solid #ddd; /* Light border for clarity */
|
| 116 |
+
border-radius: 10px; /* Rounded corners for the dataframe */
|
| 117 |
+
}
|
| 118 |
+
.stImage {
|
| 119 |
+
border: 2px solid #0066ff; /* Border for images */
|
| 120 |
+
border-radius: 10px; /* Rounded corners */
|
| 121 |
+
box-shadow: 0 0 8px rgba(0, 0, 0, 0.2); /* Subtle shadow */
|
| 122 |
+
}
|
| 123 |
+
</style>
|
| 124 |
+
""", unsafe_allow_html=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
numpy
|
| 3 |
+
pillow
|
| 4 |
+
scikit-learn
|
| 5 |
+
keras
|