Spaces:
Running
Running
| import graphviz | |
| import json | |
| from tempfile import NamedTemporaryFile | |
| import os | |
| def generate_process_flow_diagram(json_input: str, output_format: str) -> str: | |
| """ | |
| Generates a Process Flow Diagram (Flowchart) from JSON input. | |
| Args: | |
| json_input (str): A JSON string describing the process flow structure. | |
| It must follow the Expected JSON Format Example below. | |
| output_format (str): The output format for the generated diagram. | |
| Supported formats: "png" or "svg" | |
| Expected JSON Format Example: | |
| { | |
| "start_node": "Start Inference Request", | |
| "nodes": [ | |
| { | |
| "id": "user_input", | |
| "label": "Receive User Input (Data)", | |
| "type": "io" | |
| }, | |
| { | |
| "id": "preprocess_data", | |
| "label": "Preprocess Data", | |
| "type": "process" | |
| }, | |
| { | |
| "id": "validate_data", | |
| "label": "Validate Data Format/Type", | |
| "type": "decision" | |
| }, | |
| { | |
| "id": "data_valid_yes", | |
| "label": "Data Valid?", | |
| "type": "decision" | |
| }, | |
| { | |
| "id": "load_model", | |
| "label": "Load AI Model (if not cached)", | |
| "type": "process" | |
| }, | |
| { | |
| "id": "run_inference", | |
| "label": "Run AI Model Inference", | |
| "type": "process" | |
| }, | |
| { | |
| "id": "postprocess_output", | |
| "label": "Postprocess Model Output", | |
| "type": "process" | |
| }, | |
| { | |
| "id": "send_response", | |
| "label": "Send Response to User", | |
| "type": "io" | |
| }, | |
| { | |
| "id": "log_error", | |
| "label": "Log Error & Notify User", | |
| "type": "process" | |
| }, | |
| { | |
| "id": "end_inference_process", | |
| "label": "End Inference Process", | |
| "type": "end" | |
| } | |
| ], | |
| "connections": [ | |
| {"from": "start_node", "to": "user_input", "label": "Request"}, | |
| {"from": "user_input", "to": "preprocess_data", "label": "Data Received"}, | |
| {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"}, | |
| {"from": "validate_data", "to": "data_valid_yes", "label": "Check"}, | |
| {"from": "data_valid_yes", "to": "load_model", "label": "Yes"}, | |
| {"from": "data_valid_yes", "to": "log_error", "label": "No"}, | |
| {"from": "load_model", "to": "run_inference", "label": "Model Ready"}, | |
| {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"}, | |
| {"from": "postprocess_output", "to": "send_response", "label": "Ready"}, | |
| {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"}, | |
| {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"} | |
| ] | |
| } | |
| Returns: | |
| str: The filepath to the generated image file. | |
| """ | |
| try: | |
| if not json_input.strip(): | |
| return "Error: Empty input" | |
| data = json.loads(json_input) | |
| if 'start_node' not in data or 'nodes' not in data or 'connections' not in data: | |
| raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'") | |
| node_shapes = { | |
| "process": "box", | |
| "decision": "diamond", | |
| "start": "oval", | |
| "end": "oval", | |
| "io": "parallelogram", | |
| "document": "note", | |
| "default": "box" | |
| } | |
| node_colors = { | |
| "process": "#BEBEBE", | |
| "decision": "#FFF9C4", | |
| "start": "#A8E6CF", | |
| "end": "#FFB3BA", | |
| "io": "#B8D4F1", | |
| "document": "#F0F8FF", | |
| "default": "#BEBEBE" | |
| } | |
| dot = graphviz.Digraph( | |
| name='ProcessFlowDiagram', | |
| format='png', | |
| graph_attr={ | |
| 'rankdir': 'TB', | |
| 'splines': 'ortho', | |
| 'bgcolor': 'white', | |
| 'pad': '0.5', | |
| 'nodesep': '0.6', | |
| 'ranksep': '0.8' | |
| } | |
| ) | |
| all_defined_nodes = {node['id']: node for node in data['nodes']} | |
| start_node_id = data['start_node'] | |
| dot.node( | |
| start_node_id, | |
| start_node_id, | |
| shape=node_shapes['start'], | |
| style='filled,rounded', | |
| fillcolor=node_colors['start'], | |
| fontcolor='black', | |
| fontsize='14' | |
| ) | |
| for node_id, node_info in all_defined_nodes.items(): | |
| if node_id == start_node_id: | |
| continue | |
| node_type = node_info.get("type", "default") | |
| shape = node_shapes.get(node_type, "box") | |
| color = node_colors.get(node_type, node_colors["default"]) | |
| node_label = node_info['label'] | |
| dot.node( | |
| node_id, | |
| node_label, | |
| shape=shape, | |
| style='filled,rounded', | |
| fillcolor=color, | |
| fontcolor='black', | |
| fontsize='14' | |
| ) | |
| for connection in data['connections']: | |
| dot.edge( | |
| connection['from'], | |
| connection['to'], | |
| label=connection.get('label', ''), | |
| color='#4a4a4a', | |
| fontcolor='#4a4a4a', | |
| fontsize='10' | |
| ) | |
| with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp: | |
| dot.render(tmp.name, format=output_format, cleanup=True) | |
| return f"{tmp.name}.{output_format}" | |
| except json.JSONDecodeError: | |
| return "Error: Invalid JSON format" | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |