Spaces:
Running
Running
Update sample_data.py
Browse files- sample_data.py +559 -19
sample_data.py
CHANGED
|
@@ -474,45 +474,585 @@ WBS_DIAGRAM_JSON = """
|
|
| 474 |
|
| 475 |
"""
|
| 476 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
TIMELINE_JSON = """
|
| 478 |
{
|
| 479 |
-
"title": "
|
|
|
|
| 480 |
"events": [
|
| 481 |
{
|
| 482 |
"id": "event_1",
|
| 483 |
-
"label": "
|
| 484 |
-
"date": "
|
| 485 |
-
"description": "
|
| 486 |
},
|
| 487 |
{
|
| 488 |
"id": "event_2",
|
| 489 |
-
"label": "
|
| 490 |
-
"date": "
|
| 491 |
-
"description": "
|
| 492 |
},
|
| 493 |
{
|
| 494 |
"id": "event_3",
|
| 495 |
-
"label": "
|
| 496 |
-
"date": "
|
| 497 |
-
"description": "
|
| 498 |
},
|
| 499 |
{
|
| 500 |
"id": "event_4",
|
| 501 |
-
"label": "
|
| 502 |
-
"date": "
|
| 503 |
-
"description": "
|
| 504 |
},
|
| 505 |
{
|
| 506 |
"id": "event_5",
|
| 507 |
-
"label": "
|
| 508 |
-
"date": "
|
| 509 |
-
"description": "
|
| 510 |
},
|
| 511 |
{
|
| 512 |
"id": "event_6",
|
| 513 |
-
"label": "
|
| 514 |
-
"date": "
|
| 515 |
-
"description": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
}
|
| 517 |
]
|
| 518 |
}
|
|
|
|
| 474 |
|
| 475 |
"""
|
| 476 |
|
| 477 |
+
CONCEPT_MAP_JSON = """
|
| 478 |
+
{
|
| 479 |
+
"central_node": "Artificial Intelligence (AI)",
|
| 480 |
+
"nodes": [
|
| 481 |
+
{
|
| 482 |
+
"id": "ml_fundamental",
|
| 483 |
+
"label": "Machine Learning",
|
| 484 |
+
"relationship": "is essential for",
|
| 485 |
+
"subnodes": [
|
| 486 |
+
{
|
| 487 |
+
"id": "dl_branch",
|
| 488 |
+
"label": "Deep Learning",
|
| 489 |
+
"relationship": "for example",
|
| 490 |
+
"subnodes": [
|
| 491 |
+
{
|
| 492 |
+
"id": "cnn_example",
|
| 493 |
+
"label": "CNNs",
|
| 494 |
+
"relationship": "for example"
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"id": "rnn_example",
|
| 498 |
+
"label": "RNNs",
|
| 499 |
+
"relationship": "for example"
|
| 500 |
+
}
|
| 501 |
+
]
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"id": "rl_branch",
|
| 505 |
+
"label": "Reinforcement Learning",
|
| 506 |
+
"relationship": "for example",
|
| 507 |
+
"subnodes": [
|
| 508 |
+
{
|
| 509 |
+
"id": "qlearning_example",
|
| 510 |
+
"label": "Q-Learning",
|
| 511 |
+
"relationship": "example"
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"id": "pg_example",
|
| 515 |
+
"label": "Policy Gradients",
|
| 516 |
+
"relationship": "example"
|
| 517 |
+
}
|
| 518 |
+
]
|
| 519 |
+
}
|
| 520 |
+
]
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"id": "ai_types",
|
| 524 |
+
"label": "Types",
|
| 525 |
+
"relationship": "formed by",
|
| 526 |
+
"subnodes": [
|
| 527 |
+
{
|
| 528 |
+
"id": "agi_type",
|
| 529 |
+
"label": "AGI",
|
| 530 |
+
"relationship": "this is",
|
| 531 |
+
"subnodes": [
|
| 532 |
+
{
|
| 533 |
+
"id": "strong_ai",
|
| 534 |
+
"label": "Strong AI",
|
| 535 |
+
"relationship": "provoked by",
|
| 536 |
+
"subnodes": [
|
| 537 |
+
{
|
| 538 |
+
"id": "human_intel",
|
| 539 |
+
"label": "Human-level Intel.",
|
| 540 |
+
"relationship": "of"
|
| 541 |
+
}
|
| 542 |
+
]
|
| 543 |
+
}
|
| 544 |
+
]
|
| 545 |
+
},
|
| 546 |
+
{
|
| 547 |
+
"id": "ani_type",
|
| 548 |
+
"label": "ANI",
|
| 549 |
+
"relationship": "this is",
|
| 550 |
+
"subnodes": [
|
| 551 |
+
{
|
| 552 |
+
"id": "weak_ai",
|
| 553 |
+
"label": "Weak AI",
|
| 554 |
+
"relationship": "provoked by",
|
| 555 |
+
"subnodes": [
|
| 556 |
+
{
|
| 557 |
+
"id": "narrow_tasks",
|
| 558 |
+
"label": "Narrow Tasks",
|
| 559 |
+
"relationship": "of"
|
| 560 |
+
}
|
| 561 |
+
]
|
| 562 |
+
}
|
| 563 |
+
]
|
| 564 |
+
}
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"id": "ai_capabilities",
|
| 569 |
+
"label": "Capabilities",
|
| 570 |
+
"relationship": "change",
|
| 571 |
+
"subnodes": [
|
| 572 |
+
{
|
| 573 |
+
"id": "data_proc",
|
| 574 |
+
"label": "Data Processing",
|
| 575 |
+
"relationship": "can",
|
| 576 |
+
"subnodes": [
|
| 577 |
+
{
|
| 578 |
+
"id": "big_data",
|
| 579 |
+
"label": "Big Data",
|
| 580 |
+
"relationship": "as",
|
| 581 |
+
"subnodes": [
|
| 582 |
+
{
|
| 583 |
+
"id": "analysis_example",
|
| 584 |
+
"label": "Data Analysis",
|
| 585 |
+
"relationship": "example"
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"id": "prediction_example",
|
| 589 |
+
"label": "Prediction",
|
| 590 |
+
"relationship": "example"
|
| 591 |
+
}
|
| 592 |
+
]
|
| 593 |
+
}
|
| 594 |
+
]
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"id": "decision_making",
|
| 598 |
+
"label": "Decision Making",
|
| 599 |
+
"relationship": "can be",
|
| 600 |
+
"subnodes": [
|
| 601 |
+
{
|
| 602 |
+
"id": "automation",
|
| 603 |
+
"label": "Automation",
|
| 604 |
+
"relationship": "as",
|
| 605 |
+
"subnodes": [
|
| 606 |
+
{
|
| 607 |
+
"id": "robotics_example",
|
| 608 |
+
"label": "Robotics",
|
| 609 |
+
"relationship": "Example"},
|
| 610 |
+
{
|
| 611 |
+
"id": "autonomous_example",
|
| 612 |
+
"label": "Autonomous Vehicles",
|
| 613 |
+
"relationship": "of one"
|
| 614 |
+
}
|
| 615 |
+
]
|
| 616 |
+
}
|
| 617 |
+
]
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"id": "problem_solving",
|
| 621 |
+
"label": "Problem Solving",
|
| 622 |
+
"relationship": "can",
|
| 623 |
+
"subnodes": [
|
| 624 |
+
{
|
| 625 |
+
"id": "optimization",
|
| 626 |
+
"label": "Optimization",
|
| 627 |
+
"relationship": "as is",
|
| 628 |
+
"subnodes": [
|
| 629 |
+
{
|
| 630 |
+
"id": "algorithms_example",
|
| 631 |
+
"label": "Algorithms",
|
| 632 |
+
"relationship": "for example"
|
| 633 |
+
}
|
| 634 |
+
]
|
| 635 |
+
}
|
| 636 |
+
]
|
| 637 |
+
}
|
| 638 |
+
]
|
| 639 |
+
}
|
| 640 |
+
]
|
| 641 |
+
}
|
| 642 |
+
"""
|
| 643 |
+
|
| 644 |
+
# JSON for Synoptic Chart (horizontal hierarchy) - AI related, 4 levels
|
| 645 |
+
SYNOPTIC_CHART_JSON = """
|
| 646 |
+
{
|
| 647 |
+
"central_node": "AI Project Lifecycle",
|
| 648 |
+
"nodes": [
|
| 649 |
+
{
|
| 650 |
+
"id": "phase1",
|
| 651 |
+
"label": "I. Problem Definition & Data Acquisition",
|
| 652 |
+
"relationship": "Starts with",
|
| 653 |
+
"subnodes": [
|
| 654 |
+
{
|
| 655 |
+
"id": "sub1_1",
|
| 656 |
+
"label": "1. Problem Formulation",
|
| 657 |
+
"relationship": "Involves",
|
| 658 |
+
"subnodes": [
|
| 659 |
+
{"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
|
| 660 |
+
{"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
|
| 661 |
+
]
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"id": "sub1_2",
|
| 665 |
+
"label": "2. Data Collection",
|
| 666 |
+
"relationship": "Followed by",
|
| 667 |
+
"subnodes": [
|
| 668 |
+
{"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
|
| 669 |
+
{"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
|
| 670 |
+
]
|
| 671 |
+
}
|
| 672 |
+
]
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"id": "phase2",
|
| 676 |
+
"label": "II. Model Development",
|
| 677 |
+
"relationship": "Proceeds to",
|
| 678 |
+
"subnodes": [
|
| 679 |
+
{
|
| 680 |
+
"id": "sub2_1",
|
| 681 |
+
"label": "1. Feature Engineering",
|
| 682 |
+
"relationship": "Comprises",
|
| 683 |
+
"subnodes": [
|
| 684 |
+
{"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
|
| 685 |
+
{"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
|
| 686 |
+
]
|
| 687 |
+
},
|
| 688 |
+
{
|
| 689 |
+
"id": "sub2_2",
|
| 690 |
+
"label": "2. Model Training",
|
| 691 |
+
"relationship": "Involves",
|
| 692 |
+
"subnodes": [
|
| 693 |
+
{"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
|
| 694 |
+
{"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
|
| 695 |
+
]
|
| 696 |
+
}
|
| 697 |
+
]
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"id": "phase3",
|
| 701 |
+
"label": "III. Evaluation & Deployment",
|
| 702 |
+
"relationship": "Culminates in",
|
| 703 |
+
"subnodes": [
|
| 704 |
+
{
|
| 705 |
+
"id": "sub3_1",
|
| 706 |
+
"label": "1. Model Evaluation",
|
| 707 |
+
"relationship": "Includes",
|
| 708 |
+
"subnodes": [
|
| 709 |
+
{"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
|
| 710 |
+
{"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
|
| 711 |
+
]
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"id": "sub3_2",
|
| 715 |
+
"label": "2. Deployment & Monitoring",
|
| 716 |
+
"relationship": "Requires",
|
| 717 |
+
"subnodes": [
|
| 718 |
+
{"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
|
| 719 |
+
{"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
|
| 720 |
+
]
|
| 721 |
+
}
|
| 722 |
+
]
|
| 723 |
+
}
|
| 724 |
+
]
|
| 725 |
+
}
|
| 726 |
+
"""
|
| 727 |
+
|
| 728 |
+
# JSON for Radial Diagram (central expansion) - AI related, 3 levels with 5->10 structure
|
| 729 |
+
RADIAL_DIAGRAM_JSON = """
|
| 730 |
+
{
|
| 731 |
+
"central_node": "AI Core Concepts & Domains",
|
| 732 |
+
"nodes": [
|
| 733 |
+
{
|
| 734 |
+
"id": "foundational_ml",
|
| 735 |
+
"label": "Foundational ML",
|
| 736 |
+
"relationship": "builds on",
|
| 737 |
+
"subnodes": [
|
| 738 |
+
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
|
| 739 |
+
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
|
| 740 |
+
]
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"id": "dl_architectures",
|
| 744 |
+
"label": "Deep Learning Arch.",
|
| 745 |
+
"relationship": "evolved from",
|
| 746 |
+
"subnodes": [
|
| 747 |
+
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
|
| 748 |
+
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
|
| 749 |
+
]
|
| 750 |
+
},
|
| 751 |
+
{
|
| 752 |
+
"id": "major_applications",
|
| 753 |
+
"label": "Major AI Applications",
|
| 754 |
+
"relationship": "applied in",
|
| 755 |
+
"subnodes": [
|
| 756 |
+
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
|
| 757 |
+
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
|
| 758 |
+
]
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"id": "ethical_concerns",
|
| 762 |
+
"label": "Ethical AI Concerns",
|
| 763 |
+
"relationship": "addresses",
|
| 764 |
+
"subnodes": [
|
| 765 |
+
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
|
| 766 |
+
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
|
| 767 |
+
]
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"id": "future_trends",
|
| 771 |
+
"label": "Future AI Trends",
|
| 772 |
+
"relationship": "looking at",
|
| 773 |
+
"subnodes": [
|
| 774 |
+
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
|
| 775 |
+
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
|
| 776 |
+
]
|
| 777 |
+
}
|
| 778 |
+
]
|
| 779 |
+
}
|
| 780 |
+
"""
|
| 781 |
+
|
| 782 |
+
PROCESS_FLOW_JSON = """
|
| 783 |
+
{
|
| 784 |
+
"start_node": "Start Inference Request",
|
| 785 |
+
"nodes": [
|
| 786 |
+
{
|
| 787 |
+
"id": "user_input",
|
| 788 |
+
"label": "Receive User Input (Data)",
|
| 789 |
+
"type": "io"
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"id": "preprocess_data",
|
| 793 |
+
"label": "Preprocess Data",
|
| 794 |
+
"type": "process"
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"id": "validate_data",
|
| 798 |
+
"label": "Validate Data Format/Type",
|
| 799 |
+
"type": "decision"
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"id": "data_valid_yes",
|
| 803 |
+
"label": "Data Valid?",
|
| 804 |
+
"type": "decision"
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"id": "load_model",
|
| 808 |
+
"label": "Load AI Model (if not cached)",
|
| 809 |
+
"type": "process"
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"id": "run_inference",
|
| 813 |
+
"label": "Run AI Model Inference",
|
| 814 |
+
"type": "process"
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"id": "postprocess_output",
|
| 818 |
+
"label": "Postprocess Model Output",
|
| 819 |
+
"type": "process"
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"id": "send_response",
|
| 823 |
+
"label": "Send Response to User",
|
| 824 |
+
"type": "io"
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"id": "log_error",
|
| 828 |
+
"label": "Log Error & Notify User",
|
| 829 |
+
"type": "process"
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"id": "end_inference_process",
|
| 833 |
+
"label": "End Inference Process",
|
| 834 |
+
"type": "end"
|
| 835 |
+
}
|
| 836 |
+
],
|
| 837 |
+
"connections": [
|
| 838 |
+
{"from": "start_node", "to": "user_input", "label": "Request"},
|
| 839 |
+
{"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
|
| 840 |
+
{"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
|
| 841 |
+
{"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
|
| 842 |
+
{"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
|
| 843 |
+
{"from": "data_valid_yes", "to": "log_error", "label": "No"},
|
| 844 |
+
{"from": "load_model", "to": "run_inference", "label": "Model Ready"},
|
| 845 |
+
{"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
|
| 846 |
+
{"from": "postprocess_output", "to": "send_response", "label": "Ready"},
|
| 847 |
+
{"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
|
| 848 |
+
{"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
|
| 849 |
+
]
|
| 850 |
+
}
|
| 851 |
+
"""
|
| 852 |
+
|
| 853 |
+
# New JSON for Work Breakdown Structure (WBS) Diagram - similar to image, but not identical
|
| 854 |
+
WBS_DIAGRAM_JSON = """
|
| 855 |
+
{
|
| 856 |
+
"project_title": "AI Model Development Project",
|
| 857 |
+
"phases": [
|
| 858 |
+
{
|
| 859 |
+
"id": "phase_prep",
|
| 860 |
+
"label": "Preparation",
|
| 861 |
+
"tasks": [
|
| 862 |
+
{
|
| 863 |
+
"id": "task_1_1_vision",
|
| 864 |
+
"label": "Identify Vision",
|
| 865 |
+
"subtasks": [
|
| 866 |
+
{
|
| 867 |
+
"id": "subtask_1_1_1_design_staff",
|
| 868 |
+
"label": "Design & Staffing",
|
| 869 |
+
"sub_subtasks": [
|
| 870 |
+
{
|
| 871 |
+
"id": "ss_task_1_1_1_1_env_setup",
|
| 872 |
+
"label": "Environment Setup",
|
| 873 |
+
"sub_sub_subtasks": [
|
| 874 |
+
{
|
| 875 |
+
"id": "sss_task_1_1_1_1_1_lib_install",
|
| 876 |
+
"label": "Install Libraries",
|
| 877 |
+
"final_level_tasks": [
|
| 878 |
+
{"id": "ft_1_1_1_1_1_1_data_access", "label": "Grant Data Access"}
|
| 879 |
+
]
|
| 880 |
+
}
|
| 881 |
+
]
|
| 882 |
+
}
|
| 883 |
+
]
|
| 884 |
+
}
|
| 885 |
+
]
|
| 886 |
+
}
|
| 887 |
+
]
|
| 888 |
+
},
|
| 889 |
+
{
|
| 890 |
+
"id": "phase_plan",
|
| 891 |
+
"label": "Planning",
|
| 892 |
+
"tasks": [
|
| 893 |
+
{
|
| 894 |
+
"id": "task_2_1_cost_analysis",
|
| 895 |
+
"label": "Cost Analysis",
|
| 896 |
+
"subtasks": [
|
| 897 |
+
{
|
| 898 |
+
"id": "subtask_2_1_1_benefit_analysis",
|
| 899 |
+
"label": "Benefit Analysis",
|
| 900 |
+
"sub_subtasks": [
|
| 901 |
+
{
|
| 902 |
+
"id": "ss_task_2_1_1_1_risk_assess",
|
| 903 |
+
"label": "AI Risk Assessment",
|
| 904 |
+
"sub_sub_subtasks": [
|
| 905 |
+
{
|
| 906 |
+
"id": "sss_task_2_1_1_1_1_model_selection",
|
| 907 |
+
"label": "Model Selection",
|
| 908 |
+
"final_level_tasks": [
|
| 909 |
+
{"id": "ft_2_1_1_1_1_1_data_strategy", "label": "Data Strategy"}
|
| 910 |
+
]
|
| 911 |
+
}
|
| 912 |
+
]
|
| 913 |
+
}
|
| 914 |
+
]
|
| 915 |
+
}
|
| 916 |
+
]
|
| 917 |
+
}
|
| 918 |
+
]
|
| 919 |
+
},
|
| 920 |
+
{
|
| 921 |
+
"id": "phase_dev",
|
| 922 |
+
"label": "Development",
|
| 923 |
+
"tasks": [
|
| 924 |
+
{
|
| 925 |
+
"id": "task_3_1_change_mgmt",
|
| 926 |
+
"label": "Data Preprocessing",
|
| 927 |
+
"subtasks": [
|
| 928 |
+
{
|
| 929 |
+
"id": "subtask_3_1_1_implementation",
|
| 930 |
+
"label": "Feature Engineering",
|
| 931 |
+
"sub_subtasks": [
|
| 932 |
+
{
|
| 933 |
+
"id": "ss_task_3_1_1_1_beta_testing",
|
| 934 |
+
"label": "Model Training",
|
| 935 |
+
"sub_sub_subtasks": [
|
| 936 |
+
{
|
| 937 |
+
"id": "sss_task_3_1_1_1_1_other_task",
|
| 938 |
+
"label": "Model Evaluation",
|
| 939 |
+
"final_level_tasks": [
|
| 940 |
+
{"id": "ft_3_1_1_1_1_1_hyperparam_tune", "label": "Hyperparameter Tuning"}
|
| 941 |
+
]
|
| 942 |
+
}
|
| 943 |
+
]
|
| 944 |
+
}
|
| 945 |
+
]
|
| 946 |
+
}
|
| 947 |
+
]
|
| 948 |
+
}
|
| 949 |
+
]
|
| 950 |
+
}
|
| 951 |
+
]
|
| 952 |
+
}
|
| 953 |
+
"""
|
| 954 |
+
|
| 955 |
+
# JSON for Timeline Diagram
|
| 956 |
TIMELINE_JSON = """
|
| 957 |
{
|
| 958 |
+
"title": "Complete History of Artificial Intelligence",
|
| 959 |
+
"events_per_row": 4,
|
| 960 |
"events": [
|
| 961 |
{
|
| 962 |
"id": "event_1",
|
| 963 |
+
"label": "AI Concept Birth",
|
| 964 |
+
"date": "1943",
|
| 965 |
+
"description": "McCulloch & Pitts neural network model"
|
| 966 |
},
|
| 967 |
{
|
| 968 |
"id": "event_2",
|
| 969 |
+
"label": "Turing Test",
|
| 970 |
+
"date": "1950",
|
| 971 |
+
"description": "Alan Turing proposes machine intelligence test"
|
| 972 |
},
|
| 973 |
{
|
| 974 |
"id": "event_3",
|
| 975 |
+
"label": "Dartmouth Conference",
|
| 976 |
+
"date": "1956",
|
| 977 |
+
"description": "Term 'Artificial Intelligence' coined"
|
| 978 |
},
|
| 979 |
{
|
| 980 |
"id": "event_4",
|
| 981 |
+
"label": "First AI Program",
|
| 982 |
+
"date": "1957",
|
| 983 |
+
"description": "General Problem Solver (GPS) created"
|
| 984 |
},
|
| 985 |
{
|
| 986 |
"id": "event_5",
|
| 987 |
+
"label": "Perceptron Algorithm",
|
| 988 |
+
"date": "1958",
|
| 989 |
+
"description": "Frank Rosenblatt develops perceptron"
|
| 990 |
},
|
| 991 |
{
|
| 992 |
"id": "event_6",
|
| 993 |
+
"label": "LISP Programming",
|
| 994 |
+
"date": "1959",
|
| 995 |
+
"description": "John McCarthy creates LISP for AI"
|
| 996 |
+
},
|
| 997 |
+
{
|
| 998 |
+
"id": "event_7",
|
| 999 |
+
"label": "Expert Systems",
|
| 1000 |
+
"date": "1965",
|
| 1001 |
+
"description": "DENDRAL - first expert system"
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"id": "event_8",
|
| 1005 |
+
"label": "AI Winter Begins",
|
| 1006 |
+
"date": "1974",
|
| 1007 |
+
"description": "Funding cuts due to unmet expectations"
|
| 1008 |
+
},
|
| 1009 |
+
{
|
| 1010 |
+
"id": "event_9",
|
| 1011 |
+
"label": "Backpropagation",
|
| 1012 |
+
"date": "1986",
|
| 1013 |
+
"description": "Algorithm for training neural networks"
|
| 1014 |
+
},
|
| 1015 |
+
{
|
| 1016 |
+
"id": "event_10",
|
| 1017 |
+
"label": "Deep Blue Victory",
|
| 1018 |
+
"date": "1997",
|
| 1019 |
+
"description": "IBM computer defeats chess champion"
|
| 1020 |
+
},
|
| 1021 |
+
{
|
| 1022 |
+
"id": "event_11",
|
| 1023 |
+
"label": "Machine Learning Boom",
|
| 1024 |
+
"date": "2000s",
|
| 1025 |
+
"description": "Support Vector Machines, Random Forests"
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"id": "event_12",
|
| 1029 |
+
"label": "Deep Learning Revival",
|
| 1030 |
+
"date": "2006",
|
| 1031 |
+
"description": "Geoffrey Hinton's deep belief networks"
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"id": "event_13",
|
| 1035 |
+
"label": "ImageNet Challenge",
|
| 1036 |
+
"date": "2012",
|
| 1037 |
+
"description": "AlexNet wins with deep CNN"
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"id": "event_14",
|
| 1041 |
+
"label": "AlphaGo Triumph",
|
| 1042 |
+
"date": "2016",
|
| 1043 |
+
"description": "DeepMind defeats Go world champion"
|
| 1044 |
+
},
|
| 1045 |
+
{
|
| 1046 |
+
"id": "event_15",
|
| 1047 |
+
"label": "Transformer Architecture",
|
| 1048 |
+
"date": "2017",
|
| 1049 |
+
"description": "Attention Is All You Need paper"
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"id": "event_16",
|
| 1053 |
+
"label": "GPT Era Begins",
|
| 1054 |
+
"date": "2018-2023",
|
| 1055 |
+
"description": "Large Language Models revolution"
|
| 1056 |
}
|
| 1057 |
]
|
| 1058 |
}
|