File size: 12,003 Bytes
9145e48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import logging
from typing import Optional, List, Dict, Any
import asyncio
from pathlib import Path
import tempfile
import os
from PIL import Image
import pytesseract
import config
logger = logging.getLogger(__name__)
class OCRService:
def __init__(self):
self.config = config.config
# Configure Tesseract path if specified
if self.config.TESSERACT_PATH:
pytesseract.pytesseract.tesseract_cmd = self.config.TESSERACT_PATH
self.language = self.config.OCR_LANGUAGE
# Test OCR availability
self._test_ocr_availability()
def _test_ocr_availability(self):
"""Test if OCR is available and working"""
try:
# Create a simple test image
test_image = Image.new('RGB', (100, 30), color='white')
pytesseract.image_to_string(test_image)
logger.info("OCR service initialized successfully")
except Exception as e:
logger.warning(f"OCR may not be available: {str(e)}")
async def extract_text_from_image(self, image_path: str, language: Optional[str] = None) -> str:
"""Extract text from an image file"""
try:
# Use specified language or default
lang = language or self.language
# Load image
image = Image.open(image_path)
# Perform OCR in thread pool to avoid blocking
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(
None,
self._extract_text_sync,
image,
lang
)
return text.strip()
except Exception as e:
logger.error(f"Error extracting text from image {image_path}: {str(e)}")
return ""
def _extract_text_sync(self, image: Image.Image, language: str) -> str:
"""Synchronous text extraction"""
try:
# Optimize image for OCR
processed_image = self._preprocess_image(image)
# Configure OCR
config_string = '--psm 6' # Assume a single uniform block of text
# Extract text
text = pytesseract.image_to_string(
processed_image,
lang=language,
config=config_string
)
return text
except Exception as e:
logger.error(f"Error in synchronous OCR: {str(e)}")
return ""
def _preprocess_image(self, image: Image.Image) -> Image.Image:
"""Preprocess image to improve OCR accuracy"""
try:
# Convert to grayscale if not already
if image.mode != 'L':
image = image.convert('L')
# Resize image if too small (OCR works better on larger images)
width, height = image.size
if width < 300 or height < 300:
scale_factor = max(300 / width, 300 / height)
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return image
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
return image
async def extract_text_from_pdf_images(self, pdf_path: str) -> List[str]:
"""Extract text from PDF by converting pages to images and running OCR"""
try:
import fitz # PyMuPDF
texts = []
# Open PDF
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
try:
# Get page
page = pdf_document[page_num]
# Convert page to image
mat = fitz.Matrix(2.0, 2.0) # Scale factor for better quality
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
# Create PIL image from bytes
with tempfile.NamedTemporaryFile(suffix='.ppm', delete=False) as tmp_file:
tmp_file.write(img_data)
tmp_file.flush()
# Extract text from image
page_text = await self.extract_text_from_image(tmp_file.name)
texts.append(page_text)
# Clean up temporary file
os.unlink(tmp_file.name)
except Exception as e:
logger.warning(f"Error processing PDF page {page_num}: {str(e)}")
texts.append("")
pdf_document.close()
return texts
except ImportError:
logger.error("PyMuPDF not available for PDF OCR")
return []
except Exception as e:
logger.error(f"Error extracting text from PDF images: {str(e)}")
return []
async def extract_text_with_confidence(self, image_path: str, min_confidence: float = 0.5) -> Dict[str, Any]:
"""Extract text with confidence scores"""
try:
image = Image.open(image_path)
# Get detailed OCR data with confidence scores
loop = asyncio.get_event_loop()
ocr_data = await loop.run_in_executor(
None,
self._extract_detailed_data,
image
)
# Filter by confidence
filtered_text = []
word_confidences = []
for i, confidence in enumerate(ocr_data.get('conf', [])):
if confidence > min_confidence * 100: # Tesseract uses 0-100 scale
text = ocr_data.get('text', [])[i]
if text.strip():
filtered_text.append(text)
word_confidences.append(confidence / 100.0) # Convert to 0-1 scale
return {
"text": " ".join(filtered_text),
"confidence": sum(word_confidences) / len(word_confidences) if word_confidences else 0.0,
"word_count": len(filtered_text),
"raw_data": ocr_data
}
except Exception as e:
logger.error(f"Error extracting text with confidence: {str(e)}")
return {
"text": "",
"confidence": 0.0,
"word_count": 0,
"error": str(e)
}
def _extract_detailed_data(self, image: Image.Image) -> Dict[str, Any]:
"""Extract detailed OCR data with positions and confidence"""
try:
processed_image = self._preprocess_image(image)
# Get detailed data
data = pytesseract.image_to_data(
processed_image,
lang=self.language,
config='--psm 6',
output_type=pytesseract.Output.DICT
)
return data
except Exception as e:
logger.error(f"Error extracting detailed OCR data: {str(e)}")
return {}
async def detect_language(self, image_path: str) -> str:
"""Detect the language of text in an image"""
try:
image = Image.open(image_path)
# Run language detection
loop = asyncio.get_event_loop()
languages = await loop.run_in_executor(
None,
pytesseract.image_to_osd,
image
)
# Parse the output to get the language
for line in languages.split('\n'):
if 'Script:' in line:
script = line.split(':')[1].strip()
# Map script to language code
script_to_lang = {
'Latin': 'eng',
'Arabic': 'ara',
'Chinese': 'chi_sim',
'Japanese': 'jpn',
'Korean': 'kor'
}
return script_to_lang.get(script, 'eng')
return 'eng' # Default to English
except Exception as e:
logger.error(f"Error detecting language: {str(e)}")
return 'eng'
async def extract_tables_from_image(self, image_path: str) -> List[List[str]]:
"""Extract table data from an image"""
try:
# This is a basic implementation
# For better table extraction, consider using specialized libraries like table-transformer
image = Image.open(image_path)
# Use specific PSM for tables
loop = asyncio.get_event_loop()
text = await loop.run_in_executor(
None,
lambda: pytesseract.image_to_string(
image,
lang=self.language,
config='--psm 6 -c preserve_interword_spaces=1'
)
)
# Simple table parsing (assumes space/tab separated)
lines = text.split('\n')
table_data = []
for line in lines:
if line.strip():
# Split by multiple spaces or tabs
cells = [cell.strip() for cell in line.split() if cell.strip()]
if cells:
table_data.append(cells)
return table_data
except Exception as e:
logger.error(f"Error extracting tables from image: {str(e)}")
return []
async def get_supported_languages(self) -> List[str]:
"""Get list of supported OCR languages"""
try:
languages = pytesseract.get_languages()
return sorted(languages)
except Exception as e:
logger.error(f"Error getting supported languages: {str(e)}")
return ['eng'] # Default to English only
async def validate_ocr_setup(self) -> Dict[str, Any]:
"""Validate OCR setup and return status"""
try:
# Test basic functionality
test_image = Image.new('RGB', (200, 50), color='white')
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(test_image)
try:
# Try to use a default font
draw.text((10, 10), "Test OCR", fill='black')
except:
# Fall back to basic text without font
draw.text((10, 10), "Test", fill='black')
# Test OCR
result = pytesseract.image_to_string(test_image)
# Get available languages
languages = await self.get_supported_languages()
return {
"status": "operational",
"tesseract_version": pytesseract.get_tesseract_version(),
"available_languages": languages,
"current_language": self.language,
"test_result": result.strip(),
"tesseract_path": pytesseract.pytesseract.tesseract_cmd
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"tesseract_path": pytesseract.pytesseract.tesseract_cmd
}
def extract_text(self, file_path):
# Dummy implementation for OCR
return "OCR functionality not implemented yet." |