add app.py / main file
Browse files
app.py
CHANGED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py - For Hugging Face Spaces (without Modal)
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import torch
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
# Setup logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
class TextAnalyzer:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
"""Initialize models"""
|
| 15 |
+
self.device = 0 if torch.cuda.is_available() else -1
|
| 16 |
+
logger.info(f"Using device: {'GPU' if self.device == 0 else 'CPU'}")
|
| 17 |
+
|
| 18 |
+
# Load models
|
| 19 |
+
logger.info("Loading models...")
|
| 20 |
+
self.load_models()
|
| 21 |
+
logger.info("β
All models loaded successfully!")
|
| 22 |
+
|
| 23 |
+
def load_models(self):
|
| 24 |
+
"""Load all required models"""
|
| 25 |
+
try:
|
| 26 |
+
# Use smaller, faster models for Hugging Face Spaces
|
| 27 |
+
self.sentiment_analyzer = pipeline(
|
| 28 |
+
"sentiment-analysis",
|
| 29 |
+
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 30 |
+
device=self.device
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Use a smaller summarization model
|
| 34 |
+
self.summarizer = pipeline(
|
| 35 |
+
"summarization",
|
| 36 |
+
model="sshleifer/distilbart-cnn-12-6",
|
| 37 |
+
device=self.device
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Simple language detection (or skip if too slow)
|
| 41 |
+
try:
|
| 42 |
+
self.language_detector = pipeline(
|
| 43 |
+
"text-classification",
|
| 44 |
+
model="papluca/xlm-roberta-base-language-detection",
|
| 45 |
+
device=self.device
|
| 46 |
+
)
|
| 47 |
+
self.has_language_detection = True
|
| 48 |
+
except:
|
| 49 |
+
self.has_language_detection = False
|
| 50 |
+
logger.warning("Language detection model not loaded")
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logger.error(f"Error loading models: {e}")
|
| 54 |
+
raise
|
| 55 |
+
|
| 56 |
+
@lru_cache(maxsize=64)
|
| 57 |
+
def cached_analyze(self, text_hash: str, text: str):
|
| 58 |
+
"""Cache results for identical inputs"""
|
| 59 |
+
return self._analyze_text(text)
|
| 60 |
+
|
| 61 |
+
def _analyze_text(self, text: str):
|
| 62 |
+
"""Core analysis logic"""
|
| 63 |
+
# Basic statistics
|
| 64 |
+
words = text.split()
|
| 65 |
+
word_count = len(words)
|
| 66 |
+
char_count = len(text)
|
| 67 |
+
|
| 68 |
+
# Limit text length for models
|
| 69 |
+
text_limited = text[:512]
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
# Sentiment analysis
|
| 73 |
+
sentiment_result = self.sentiment_analyzer(text_limited)[0]
|
| 74 |
+
|
| 75 |
+
# Language detection (if available)
|
| 76 |
+
language_result = None
|
| 77 |
+
if self.has_language_detection:
|
| 78 |
+
try:
|
| 79 |
+
language_result = self.language_detector(text_limited)[0]
|
| 80 |
+
except:
|
| 81 |
+
language_result = None
|
| 82 |
+
|
| 83 |
+
# Summarization (only for longer texts)
|
| 84 |
+
summary = ""
|
| 85 |
+
if word_count > 50:
|
| 86 |
+
try:
|
| 87 |
+
summary_result = self.summarizer(
|
| 88 |
+
text,
|
| 89 |
+
max_length=min(100, word_count // 3),
|
| 90 |
+
min_length=20,
|
| 91 |
+
do_sample=False
|
| 92 |
+
)
|
| 93 |
+
summary = summary_result[0]["summary_text"]
|
| 94 |
+
except Exception as e:
|
| 95 |
+
summary = f"Unable to generate summary: {str(e)}"
|
| 96 |
+
else:
|
| 97 |
+
summary = "Text too short for summarization (minimum 50 words)"
|
| 98 |
+
|
| 99 |
+
return {
|
| 100 |
+
"sentiment": {
|
| 101 |
+
"label": sentiment_result["label"],
|
| 102 |
+
"confidence": round(sentiment_result["score"], 3)
|
| 103 |
+
},
|
| 104 |
+
"language": {
|
| 105 |
+
"language": language_result["label"] if language_result else "Unknown",
|
| 106 |
+
"confidence": round(language_result["score"], 3) if language_result else 0
|
| 107 |
+
} if self.has_language_detection else {"language": "Detection disabled", "confidence": 0},
|
| 108 |
+
"summary": summary,
|
| 109 |
+
"stats": {
|
| 110 |
+
"word_count": word_count,
|
| 111 |
+
"char_count": char_count,
|
| 112 |
+
"sentence_count": len([s for s in text.split('.') if s.strip()])
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
logger.error(f"Analysis error: {e}")
|
| 118 |
+
return {
|
| 119 |
+
"error": f"Analysis failed: {str(e)}",
|
| 120 |
+
"stats": {"word_count": word_count, "char_count": char_count}
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
def analyze(self, text: str):
|
| 124 |
+
"""Public analyze method with caching"""
|
| 125 |
+
if not text or not text.strip():
|
| 126 |
+
return None
|
| 127 |
+
|
| 128 |
+
# Create hash for caching
|
| 129 |
+
text_hash = str(hash(text.strip()))
|
| 130 |
+
return self.cached_analyze(text_hash, text.strip())
|
| 131 |
+
|
| 132 |
+
# Initialize analyzer
|
| 133 |
+
logger.info("Initializing Text Analyzer...")
|
| 134 |
+
try:
|
| 135 |
+
analyzer = TextAnalyzer()
|
| 136 |
+
analyzer_loaded = True
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.error(f"Failed to load analyzer: {e}")
|
| 139 |
+
analyzer_loaded = False
|
| 140 |
+
|
| 141 |
+
def gradio_interface(text):
|
| 142 |
+
"""Gradio interface function"""
|
| 143 |
+
if not analyzer_loaded:
|
| 144 |
+
return (
|
| 145 |
+
"β Models failed to load. Please try again later.",
|
| 146 |
+
"β Error",
|
| 147 |
+
"β Error",
|
| 148 |
+
"β Error",
|
| 149 |
+
"β Error"
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if not text or not text.strip():
|
| 153 |
+
return (
|
| 154 |
+
"Please enter some text to analyze.",
|
| 155 |
+
"No text provided",
|
| 156 |
+
"No text provided",
|
| 157 |
+
"No text provided",
|
| 158 |
+
"No text provided"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Analyze text
|
| 162 |
+
results = analyzer.analyze(text)
|
| 163 |
+
|
| 164 |
+
if not results or "error" in results:
|
| 165 |
+
error_msg = results.get("error", "Unknown error occurred") if results else "Analysis failed"
|
| 166 |
+
return error_msg, "Error", "Error", "Error", "Error"
|
| 167 |
+
|
| 168 |
+
# Format results
|
| 169 |
+
sentiment_text = f"**{results['sentiment']['label']}** (confidence: {results['sentiment']['confidence']})"
|
| 170 |
+
|
| 171 |
+
language_text = f"**{results['language']['language']}**"
|
| 172 |
+
if results['language']['confidence'] > 0:
|
| 173 |
+
language_text += f" (confidence: {results['language']['confidence']})"
|
| 174 |
+
|
| 175 |
+
summary_text = results['summary']
|
| 176 |
+
|
| 177 |
+
stats_text = f"Words: {results['stats']['word_count']} | Characters: {results['stats']['char_count']} | Sentences: {results['stats'].get('sentence_count', 'N/A')}"
|
| 178 |
+
|
| 179 |
+
return sentiment_text, language_text, summary_text, stats_text, "β
Analysis complete!"
|
| 180 |
+
|
| 181 |
+
# Create Gradio interface
|
| 182 |
+
def create_app():
|
| 183 |
+
"""Create the Gradio application"""
|
| 184 |
+
with gr.Blocks(
|
| 185 |
+
title="Smart Text Analyzer",
|
| 186 |
+
theme=gr.themes.Soft()
|
| 187 |
+
) as demo:
|
| 188 |
+
|
| 189 |
+
gr.Markdown("""
|
| 190 |
+
# π§ Smart Text Analyzer
|
| 191 |
+
**Analyze text for sentiment, language, and generate summaries**
|
| 192 |
+
|
| 193 |
+
*Powered by Hugging Face Transformers*
|
| 194 |
+
""")
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
with gr.Column():
|
| 198 |
+
text_input = gr.Textbox(
|
| 199 |
+
label="π Enter your text",
|
| 200 |
+
placeholder="Type or paste your text here for analysis...",
|
| 201 |
+
lines=6
|
| 202 |
+
)
|
| 203 |
+
analyze_btn = gr.Button("π Analyze Text", variant="primary")
|
| 204 |
+
|
| 205 |
+
with gr.Row():
|
| 206 |
+
with gr.Column():
|
| 207 |
+
sentiment_output = gr.Markdown(label="π Sentiment")
|
| 208 |
+
language_output = gr.Markdown(label="π Language")
|
| 209 |
+
with gr.Column():
|
| 210 |
+
stats_output = gr.Markdown(label="π Statistics")
|
| 211 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 212 |
+
|
| 213 |
+
summary_output = gr.Textbox(
|
| 214 |
+
label="π Summary",
|
| 215 |
+
lines=3,
|
| 216 |
+
interactive=False
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Examples
|
| 220 |
+
gr.Examples(
|
| 221 |
+
examples=[
|
| 222 |
+
["I absolutely love this new restaurant! The food was incredible and the service was outstanding."],
|
| 223 |
+
["Climate change represents one of the most significant challenges of our time. Rising global temperatures are causing widespread environmental disruption."],
|
| 224 |
+
["This movie was disappointing. The plot was confusing and the acting was poor."]
|
| 225 |
+
],
|
| 226 |
+
inputs=text_input
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
analyze_btn.click(
|
| 230 |
+
fn=gradio_interface,
|
| 231 |
+
inputs=text_input,
|
| 232 |
+
outputs=[sentiment_output, language_output, summary_output, stats_output, status_output]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
return demo
|
| 236 |
+
|
| 237 |
+
if __name__ == "__main__":
|
| 238 |
+
# Create and launch the app
|
| 239 |
+
app = create_app()
|
| 240 |
+
app.launch()
|