Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# voicepulse.py (multilingual feedback transcriber and word cloud generator with export)
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from wordcloud import WordCloud
|
| 8 |
+
import nltk
|
| 9 |
+
import io
|
| 10 |
+
import torch
|
| 11 |
+
import csv
|
| 12 |
+
from gtts import gTTS
|
| 13 |
+
|
| 14 |
+
nltk.download("stopwords")
|
| 15 |
+
stop_words = set(nltk.corpus.stopwords.words("english"))
|
| 16 |
+
|
| 17 |
+
# Translation model for multilingual -> English
|
| 18 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 19 |
+
translation_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 20 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 21 |
+
|
| 22 |
+
# In-memory feedback word list and archive
|
| 23 |
+
feedback_words = []
|
| 24 |
+
all_feedback = []
|
| 25 |
+
|
| 26 |
+
# Sample audios
|
| 27 |
+
sample_texts = {
|
| 28 |
+
"Telugu Sample": "మీ సేవలు చాలా బాగున్నాయి. మేము చాలా సంతృప్తిగా ఉన్నాము.",
|
| 29 |
+
"Hindi Sample": "आपकी सेवा बहुत अच्छी थी और हम संतुष्ट हैं।",
|
| 30 |
+
"Tamil Sample": "உங்கள் சேவை மிகவும் சிறந்ததாக இருந்தது. நாங்கள் திருப்தி அடைந்தோம்.",
|
| 31 |
+
"English Sample": "Your support team was helpful and responsive."
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
def generate_sample_audio(text, lang_code):
|
| 35 |
+
tts = gTTS(text, lang=lang_code)
|
| 36 |
+
tts.save("sample_full.mp3")
|
| 37 |
+
|
| 38 |
+
from pydub import AudioSegment
|
| 39 |
+
full_audio = AudioSegment.from_mp3("sample_full.mp3")
|
| 40 |
+
short_audio = full_audio[:3000] # first 3 seconds
|
| 41 |
+
short_audio.export("sample.mp3", format="mp3")
|
| 42 |
+
return "sample.mp3"
|
| 43 |
+
|
| 44 |
+
def translate(text, src_lang, tgt_lang="eng_Latn"):
|
| 45 |
+
translation_pipeline = pipeline(
|
| 46 |
+
"translation",
|
| 47 |
+
model=translation_model,
|
| 48 |
+
tokenizer=translation_tokenizer,
|
| 49 |
+
src_lang=src_lang,
|
| 50 |
+
tgt_lang=tgt_lang,
|
| 51 |
+
max_length=400,
|
| 52 |
+
device=device
|
| 53 |
+
)
|
| 54 |
+
result = translation_pipeline(text)
|
| 55 |
+
return result[0]['translation_text']
|
| 56 |
+
|
| 57 |
+
def get_transcription(audio, language):
|
| 58 |
+
sr, y = audio
|
| 59 |
+
y = y.astype(np.float32)
|
| 60 |
+
y /= np.max(np.abs(y))
|
| 61 |
+
|
| 62 |
+
if language == "English":
|
| 63 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
| 64 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 65 |
+
|
| 66 |
+
model_map = {
|
| 67 |
+
"Hindi": ("theainerd/Wav2Vec2-large-xlsr-hindi", "hin_Deva"),
|
| 68 |
+
"Telugu": ("anuragshas/wav2vec2-large-xlsr-53-telugu", "tel_Telu"),
|
| 69 |
+
"Tamil": ("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250", "tam_Taml"),
|
| 70 |
+
"Kannada": ("vasista22/whisper-kannada-medium", "kan_Knda")
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
model_name, src_lang = model_map[language]
|
| 74 |
+
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
| 75 |
+
text = transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 76 |
+
return translate(text, src_lang)
|
| 77 |
+
|
| 78 |
+
def process_feedback(audio, language):
|
| 79 |
+
transcription = get_transcription(audio, language)
|
| 80 |
+
|
| 81 |
+
# Use summarization to extract core feedback idea
|
| 82 |
+
summarizer = pipeline("summarization", model="mrm8488/distilbart2cnn-12-6")
|
| 83 |
+
summary = summarizer(transcription, max_length=60, min_length=10, do_sample=False)[0]['summary_text']
|
| 84 |
+
|
| 85 |
+
# Save for download
|
| 86 |
+
all_feedback.append({"Language": language, "Transcription": transcription, "Summary": summary})
|
| 87 |
+
|
| 88 |
+
# Extract meaningful words from summary
|
| 89 |
+
words = [w for w in summary.lower().split() if w.isalpha() and w not in stop_words]
|
| 90 |
+
feedback_words.extend(words)
|
| 91 |
+
|
| 92 |
+
freq = {w: feedback_words.count(w) for w in set(feedback_words)}
|
| 93 |
+
wc = WordCloud(width=800, height=400, background_color="white").generate_from_frequencies(freq)
|
| 94 |
+
buf = io.BytesIO()
|
| 95 |
+
plt.imshow(wc, interpolation="bilinear")
|
| 96 |
+
plt.axis("off")
|
| 97 |
+
plt.savefig(buf, format="png")
|
| 98 |
+
buf.seek(0)
|
| 99 |
+
image = plt.imread(buf, format="png")
|
| 100 |
+
|
| 101 |
+
return summary, image
|
| 102 |
+
|
| 103 |
+
def export_to_csv():
|
| 104 |
+
with open("feedback_export.csv", "w", newline="") as csvfile:
|
| 105 |
+
fieldnames = ["Language", "Transcription", "Summary"]
|
| 106 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 107 |
+
writer.writeheader()
|
| 108 |
+
for row in all_feedback:
|
| 109 |
+
writer.writerow(row)
|
| 110 |
+
return "feedback_export.csv"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
demo = gr.Blocks()
|
| 114 |
+
|
| 115 |
+
with demo:
|
| 116 |
+
gr.Markdown("# 🎙️ VoicePulse Multilingual Feedback Collector")
|
| 117 |
+
gr.Markdown("""
|
| 118 |
+
🗣️ **VoicePulse** lets you speak feedback in your language — Telugu, Hindi, Tamil, Kannada, or English.
|
| 119 |
+
It transcribes, translates, and summarizes the feedback, building a live word cloud to show what people care about.
|
| 120 |
+
Try speaking or use sample audio buttons below!
|
| 121 |
+
""")
|
| 122 |
+
|
| 123 |
+
with gr.Row():
|
| 124 |
+
audio_input = gr.Audio(type="numpy", label="🎤 Speak your feedback")
|
| 125 |
+
lang_dropdown = gr.Dropdown(label="🌐 Language", choices=["English", "Hindi", "Telugu", "Tamil", "Kannada"], value="English")
|
| 126 |
+
|
| 127 |
+
with gr.Row():
|
| 128 |
+
submit_btn = gr.Button("Process Feedback")
|
| 129 |
+
|
| 130 |
+
with gr.Row():
|
| 131 |
+
gr.Markdown("### 🎧 Sample Feedback (Telugu, Hindi, Tamil, English)")
|
| 132 |
+
sample_btn_te = gr.Button("🔉 Telugu Sample")
|
| 133 |
+
sample_btn_hi = gr.Button("🔉 Hindi Sample")
|
| 134 |
+
sample_btn_ta = gr.Button("🔉 Tamil Sample")
|
| 135 |
+
sample_btn_en = gr.Button("🔉 English Sample")
|
| 136 |
+
sample_audio = gr.Audio(label="🔊 Sample Audio Output (Preview)")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
summary_out = gr.Textbox(label="📝 Summarized Feedback")
|
| 140 |
+
wordcloud_out = gr.Image(type="pil", label="☁️ Word Cloud of All Feedback")
|
| 141 |
+
|
| 142 |
+
with gr.Row():
|
| 143 |
+
export_btn = gr.Button("📁 Export Feedback to CSV")
|
| 144 |
+
csv_file_output = gr.File(label="📄 Download CSV")
|
| 145 |
+
|
| 146 |
+
submit_btn.click(process_feedback, inputs=[audio_input, lang_dropdown], outputs=[summary_out, wordcloud_out])
|
| 147 |
+
export_btn.click(export_to_csv, inputs=[], outputs=csv_file_output)
|
| 148 |
+
sample_btn_te.click(lambda: generate_sample_audio(sample_texts["Telugu Sample"], 'te'), inputs=[], outputs=sample_audio)
|
| 149 |
+
sample_btn_hi.click(lambda: generate_sample_audio(sample_texts["Hindi Sample"], 'hi'), inputs=[], outputs=sample_audio)
|
| 150 |
+
sample_btn_ta.click(lambda: generate_sample_audio(sample_texts["Tamil Sample"], 'ta'), inputs=[], outputs=sample_audio)
|
| 151 |
+
sample_btn_en.click(lambda: generate_sample_audio(sample_texts["English Sample"], 'en'), inputs=[], outputs=sample_audio)
|
| 152 |
+
|
| 153 |
+
demo.launch()
|