Spaces:
Sleeping
Sleeping
File size: 15,242 Bytes
76d4323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import asyncio
import os
import json
import base64
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
from io import BytesIO
from PIL import Image
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
load_dotenv()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
class MCPClientWrapper:
def __init__(self):
self.session = None
self.exit_stack = None
self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY"), openai_api_base=os.getenv("OPENROUTER_API_BASE_URL"))
self.tools = []
def connect(self, server_path: str) -> str:
return loop.run_until_complete(self._connect(server_path))
async def _connect(self, server_path: str) -> str:
if self.exit_stack:
await self.exit_stack.aclose()
self.exit_stack = AsyncExitStack()
is_python = server_path.endswith('.py')
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_path],
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
response = await self.session.list_tools()
self.tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
tool_names = [tool["name"] for tool in self.tools]
return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
if not self.session:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please connect to an MCP server first."}
], gr.Textbox(value="")
new_messages = loop.run_until_complete(self._process_query(message, history))
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
claude_messages = []
for msg in history:
if isinstance(msg, ChatMessage):
role, content = msg.role, msg.content
else:
role, content = msg.get("role"), msg.get("content")
if role in ["user", "assistant", "system"]:
claude_messages.append({"role": role, "content": content})
claude_messages.append({"role": "user", "content": message})
response = self.mistral.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
result_messages = []
for content in response.content:
if content.type == 'text':
result_messages.append({
"role": "assistant",
"content": content.text
})
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
result_messages.append({
"role": "assistant",
"content": f"I'll use the {tool_name} tool to help answer your question.",
"metadata": {
"title": f"Using tool: {tool_name}",
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
"status": "pending",
"id": f"tool_call_{tool_name}"
}
})
result_messages.append({
"role": "assistant",
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
"metadata": {
"parent_id": f"tool_call_{tool_name}",
"id": f"params_{tool_name}",
"title": "Tool Parameters"
}
})
result = await self.session.call_tool(tool_name, tool_args)
if result_messages and "metadata" in result_messages[-2]:
result_messages[-2]["metadata"]["status"] = "done"
result_messages.append({
"role": "assistant",
"content": "Here are the results from the tool:",
"metadata": {
"title": f"Tool Result for {tool_name}",
"status": "done",
"id": f"result_{tool_name}"
}
})
result_content = result.content
if isinstance(result_content, list):
result_content = "\n".join(str(item) for item in result_content)
try:
result_json = json.loads(result_content)
if isinstance(result_json, dict) and "type" in result_json:
if result_json["type"] == "image" and "url" in result_json:
result_messages.append({
"role": "assistant",
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"image_{tool_name}",
"title": "Generated Image"
}
})
else:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
except:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
next_response = self.mistral.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
)
if next_response.content and next_response.content[0].type == 'text':
result_messages.append({
"role": "assistant",
"content": next_response.content[0].text
})
return result_messages
# New methods for image processing
def image_to_base64(self, image):
"""Convert PIL image to base64 string"""
if image is None:
return None
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
async def process_image(self, image, operation, target_format=None, width=None, height=None):
"""Process an image using MCP tools"""
if not self.session:
return None, "Please connect to an MCP server first."
if image is None:
return None, "No image provided."
try:
img_base64 = self.image_to_base64(image)
if operation == "Remove Background":
result = await self.session.call_tool("remove_background_from_url", {"url": img_base64})
elif operation == "Change Format":
if not target_format:
return None, "Please select a target format."
result = await self.session.call_tool("change_format", {
"image_base64": img_base64,
"target_format": target_format.lower()
})
elif operation == "Resize Image":
if not width or not height:
return None, "Please provide width and height."
result = await self.session.call_tool("resize_image", {
"image_base64": img_base64,
"width": int(width),
"height": int(height)
})
elif operation == "Visualize Image":
result = await self.session.call_tool("visualize_base64_image", {"image_base64": img_base64})
else:
return None, "Unknown operation."
# Process the result
result_content = result.content
if isinstance(result_content, str):
try:
result_data = json.loads(result_content)
if "image_base64" in result_data:
# Convert result base64 back to image
img_data = base64.b64decode(result_data["image_base64"])
result_img = Image.open(BytesIO(img_data))
return result_img, "Image processed successfully."
else:
return None, f"Unexpected result format: {result_content}"
except json.JSONDecodeError:
return None, f"Error decoding result: {result_content}"
else:
return None, f"Unexpected result type: {type(result_content)}"
except Exception as e:
return None, f"Error processing image: {str(e)}"
client = MCPClientWrapper()
def gradio_interface():
with gr.Blocks(title="MCP Assistant") as demo:
gr.Markdown("# MCP Assistant")
gr.Markdown("Connect to your MCP server to chat or process images")
with gr.Row(equal_height=True):
with gr.Column(scale=4):
server_path = gr.Textbox(
label="Server Script Path",
placeholder="Enter path to server script",
value="mcp_server.py"
)
with gr.Column(scale=1):
connect_btn = gr.Button("Connect")
status = gr.Textbox(label="Connection Status", interactive=False)
with gr.Tabs() as tabs:
with gr.TabItem("Chat Interface"):
chatbot = gr.Chatbot(
value=[],
height=500,
type="messages",
show_copy_button=True,
avatar_images=("👤", "🤖")
)
with gr.Row(equal_height=True):
msg = gr.Textbox(
label="Your Question",
placeholder="Ask about the available tools or how to process images",
scale=4
)
clear_btn = gr.Button("Clear Chat", scale=1)
with gr.TabItem("Image Processing"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
operation = gr.Radio(
["Remove Background", "Change Format", "Resize Image", "Visualize Image"],
label="Select Operation",
value="Visualize Image"
)
with gr.Group() as format_options:
target_format = gr.Dropdown(
["png", "jpeg", "webp"],
label="Target Format",
value="png",
visible=False
)
with gr.Group() as resize_options:
with gr.Row():
width = gr.Number(label="Width", value=300, visible=False)
height = gr.Number(label="Height", value=300, visible=False)
process_btn = gr.Button("Process Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_message = gr.Textbox(label="Status")
# Connect to server
connect_btn.click(client.connect, inputs=server_path, outputs=status)
# Chat functionality
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: [], None, chatbot)
# Image processing functionality
def update_options(op):
return {
target_format: op == "Change Format",
width: op == "Resize Image",
height: op == "Resize Image"
}
operation.change(update_options, inputs=operation, outputs=[target_format, width, height])
def process_image_wrapper(image, operation, target_format, width, height):
return loop.run_until_complete(client.process_image(image, operation, target_format, width, height))
process_btn.click(
process_image_wrapper,
inputs=[input_image, operation, target_format, width, height],
outputs=[output_image, output_message]
)
return demo
if __name__ == "__main__":
if not os.getenv("OPENROUTER_API_KEY"):
print("Warning: OPENROUTER_API_KEY not found in environment. Please set it in your .env file.")
interface = gradio_interface()
interface.launch(debug=True) |