File size: 15,242 Bytes
76d4323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import asyncio
import os
import json
import base64
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
from io import BytesIO
from PIL import Image
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI

load_dotenv()

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY"), openai_api_base=os.getenv("OPENROUTER_API_BASE_URL"))
        self.tools = []
    
    def connect(self, server_path: str) -> str:
        return loop.run_until_complete(self._connect(server_path))
    
    async def _connect(self, server_path: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()
        
        self.exit_stack = AsyncExitStack()
        
        is_python = server_path.endswith('.py')
        command = "python" if is_python else "node"
        
        server_params = StdioServerParameters(
            command=command,
            args=[server_path],
            env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
        )
        
        stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
        self.stdio, self.write = stdio_transport
        
        self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
        await self.session.initialize()
        
        response = await self.session.list_tools()
        self.tools = [{ 
            "name": tool.name,
            "description": tool.description,
            "input_schema": tool.inputSchema
        } for tool in response.tools]
        
        tool_names = [tool["name"] for tool in self.tools]
        return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
    
    def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
        if not self.session:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "Please connect to an MCP server first."}
            ], gr.Textbox(value="")
        
        new_messages = loop.run_until_complete(self._process_query(message, history))
        return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
    
    async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")
            
            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})
        
        claude_messages.append({"role": "user", "content": message})
        
        response = self.mistral.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1000,
            messages=claude_messages,
            tools=self.tools
        )

        result_messages = []
        
        for content in response.content:
            if content.type == 'text':
                result_messages.append({
                    "role": "assistant", 
                    "content": content.text
                })
                
            elif content.type == 'tool_use':
                tool_name = content.name
                tool_args = content.input
                
                result_messages.append({
                    "role": "assistant",
                    "content": f"I'll use the {tool_name} tool to help answer your question.",
                    "metadata": {
                        "title": f"Using tool: {tool_name}",
                        "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                        "status": "pending",
                        "id": f"tool_call_{tool_name}"
                    }
                })
                
                result_messages.append({
                    "role": "assistant",
                    "content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
                    "metadata": {
                        "parent_id": f"tool_call_{tool_name}",
                        "id": f"params_{tool_name}",
                        "title": "Tool Parameters"
                    }
                })
                
                result = await self.session.call_tool(tool_name, tool_args)
                
                if result_messages and "metadata" in result_messages[-2]:
                    result_messages[-2]["metadata"]["status"] = "done"
                
                result_messages.append({
                    "role": "assistant",
                    "content": "Here are the results from the tool:",
                    "metadata": {
                        "title": f"Tool Result for {tool_name}",
                        "status": "done",
                        "id": f"result_{tool_name}"
                    }
                })
                
                result_content = result.content
                if isinstance(result_content, list):
                    result_content = "\n".join(str(item) for item in result_content)
                
                try:
                    result_json = json.loads(result_content)
                    if isinstance(result_json, dict) and "type" in result_json:
                        if result_json["type"] == "image" and "url" in result_json:
                            result_messages.append({
                                "role": "assistant",
                                "content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"image_{tool_name}",
                                    "title": "Generated Image"
                                }
                            })
                        else:
                            result_messages.append({
                                "role": "assistant",
                                "content": "```\n" + result_content + "\n```",
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"raw_result_{tool_name}",
                                    "title": "Raw Output"
                                }
                            })
                except:
                    result_messages.append({
                        "role": "assistant",
                        "content": "```\n" + result_content + "\n```",
                        "metadata": {
                            "parent_id": f"result_{tool_name}",
                            "id": f"raw_result_{tool_name}",
                            "title": "Raw Output"
                        }
                    })
                
                claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
                next_response = self.mistral.messages.create(
                    model="claude-3-5-sonnet-20241022",
                    max_tokens=1000,
                    messages=claude_messages,
                )
                
                if next_response.content and next_response.content[0].type == 'text':
                    result_messages.append({
                        "role": "assistant",
                        "content": next_response.content[0].text
                    })

        return result_messages

    # New methods for image processing
    def image_to_base64(self, image):
        """Convert PIL image to base64 string"""
        if image is None:
            return None
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        return img_str
    
    async def process_image(self, image, operation, target_format=None, width=None, height=None):
        """Process an image using MCP tools"""
        if not self.session:
            return None, "Please connect to an MCP server first."
        
        if image is None:
            return None, "No image provided."

        try:
            img_base64 = self.image_to_base64(image)
            
            if operation == "Remove Background":
                result = await self.session.call_tool("remove_background_from_url", {"url": img_base64})
            
            elif operation == "Change Format":
                if not target_format:
                    return None, "Please select a target format."
                result = await self.session.call_tool("change_format", {
                    "image_base64": img_base64, 
                    "target_format": target_format.lower()
                })
            
            elif operation == "Resize Image":
                if not width or not height:
                    return None, "Please provide width and height."
                result = await self.session.call_tool("resize_image", {
                    "image_base64": img_base64,
                    "width": int(width),
                    "height": int(height)
                })
                
            elif operation == "Visualize Image":
                result = await self.session.call_tool("visualize_base64_image", {"image_base64": img_base64})
            
            else:
                return None, "Unknown operation."
            
            # Process the result
            result_content = result.content
            if isinstance(result_content, str):
                try:
                    result_data = json.loads(result_content)
                    if "image_base64" in result_data:
                        # Convert result base64 back to image
                        img_data = base64.b64decode(result_data["image_base64"])
                        result_img = Image.open(BytesIO(img_data))
                        return result_img, "Image processed successfully."
                    else:
                        return None, f"Unexpected result format: {result_content}"
                except json.JSONDecodeError:
                    return None, f"Error decoding result: {result_content}"
            else:
                return None, f"Unexpected result type: {type(result_content)}"
                
        except Exception as e:
            return None, f"Error processing image: {str(e)}"

client = MCPClientWrapper()

def gradio_interface():
    with gr.Blocks(title="MCP Assistant") as demo:
        gr.Markdown("# MCP Assistant")
        gr.Markdown("Connect to your MCP server to chat or process images")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_path = gr.Textbox(
                    label="Server Script Path",
                    placeholder="Enter path to server script",
                    value="mcp_server.py"
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")
        
        status = gr.Textbox(label="Connection Status", interactive=False)
        
        with gr.Tabs() as tabs:
            with gr.TabItem("Chat Interface"):
                chatbot = gr.Chatbot(
                    value=[], 
                    height=500,
                    type="messages",
                    show_copy_button=True,
                    avatar_images=("👤", "🤖")
                )
                
                with gr.Row(equal_height=True):
                    msg = gr.Textbox(
                        label="Your Question",
                        placeholder="Ask about the available tools or how to process images",
                        scale=4
                    )
                    clear_btn = gr.Button("Clear Chat", scale=1)
            
            with gr.TabItem("Image Processing"):
                with gr.Row():
                    with gr.Column():
                        input_image = gr.Image(label="Input Image", type="pil")
                        operation = gr.Radio(
                            ["Remove Background", "Change Format", "Resize Image", "Visualize Image"],
                            label="Select Operation",
                            value="Visualize Image"
                        )
                        
                        with gr.Group() as format_options:
                            target_format = gr.Dropdown(
                                ["png", "jpeg", "webp"],
                                label="Target Format",
                                value="png",
                                visible=False
                            )
                        
                        with gr.Group() as resize_options:
                            with gr.Row():
                                width = gr.Number(label="Width", value=300, visible=False)
                                height = gr.Number(label="Height", value=300, visible=False)
                        
                        process_btn = gr.Button("Process Image")
                    
                    with gr.Column():
                        output_image = gr.Image(label="Processed Image")
                        output_message = gr.Textbox(label="Status")
        
        # Connect to server
        connect_btn.click(client.connect, inputs=server_path, outputs=status)
        
        # Chat functionality
        msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)
        
        # Image processing functionality
        def update_options(op):
            return {
                target_format: op == "Change Format",
                width: op == "Resize Image",
                height: op == "Resize Image"
            }
        
        operation.change(update_options, inputs=operation, outputs=[target_format, width, height])
        
        def process_image_wrapper(image, operation, target_format, width, height):
            return loop.run_until_complete(client.process_image(image, operation, target_format, width, height))
        
        process_btn.click(
            process_image_wrapper,
            inputs=[input_image, operation, target_format, width, height],
            outputs=[output_image, output_message]
        )
        
    return demo

if __name__ == "__main__":
    if not os.getenv("OPENROUTER_API_KEY"):
        print("Warning: OPENROUTER_API_KEY not found in environment. Please set it in your .env file.")
    
    interface = gradio_interface()
    interface.launch(debug=True)