JuanjoSG5
commited on
Commit
·
14c9c39
1
Parent(s):
100ea5d
doc: removed debugging logs
Browse files- agent_test.py +21 -141
- gradio_interface/app.py +3 -23
agent_test.py
CHANGED
|
@@ -22,7 +22,7 @@ class MCPClientWrapper:
|
|
| 22 |
def __init__(self):
|
| 23 |
self.session = None
|
| 24 |
self.exit_stack = None
|
| 25 |
-
self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY")
|
| 26 |
self.tools = []
|
| 27 |
|
| 28 |
def connect(self, server_path: str) -> str:
|
|
@@ -191,165 +191,45 @@ class MCPClientWrapper:
|
|
| 191 |
|
| 192 |
return result_messages
|
| 193 |
|
| 194 |
-
# New methods for image processing
|
| 195 |
-
def image_to_base64(self, image):
|
| 196 |
-
"""Convert PIL image to base64 string"""
|
| 197 |
-
if image is None:
|
| 198 |
-
return None
|
| 199 |
-
buffered = BytesIO()
|
| 200 |
-
image.save(buffered, format="PNG")
|
| 201 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 202 |
-
return img_str
|
| 203 |
-
|
| 204 |
-
async def process_image(self, image, operation, target_format=None, width=None, height=None):
|
| 205 |
-
"""Process an image using MCP tools"""
|
| 206 |
-
if not self.session:
|
| 207 |
-
return None, "Please connect to an MCP server first."
|
| 208 |
-
|
| 209 |
-
if image is None:
|
| 210 |
-
return None, "No image provided."
|
| 211 |
-
|
| 212 |
-
try:
|
| 213 |
-
img_base64 = self.image_to_base64(image)
|
| 214 |
-
|
| 215 |
-
if operation == "Remove Background":
|
| 216 |
-
result = await self.session.call_tool("remove_background_from_url", {"url": img_base64})
|
| 217 |
-
|
| 218 |
-
elif operation == "Change Format":
|
| 219 |
-
if not target_format:
|
| 220 |
-
return None, "Please select a target format."
|
| 221 |
-
result = await self.session.call_tool("change_format", {
|
| 222 |
-
"image_base64": img_base64,
|
| 223 |
-
"target_format": target_format.lower()
|
| 224 |
-
})
|
| 225 |
-
|
| 226 |
-
elif operation == "Resize Image":
|
| 227 |
-
if not width or not height:
|
| 228 |
-
return None, "Please provide width and height."
|
| 229 |
-
result = await self.session.call_tool("resize_image", {
|
| 230 |
-
"image_base64": img_base64,
|
| 231 |
-
"width": int(width),
|
| 232 |
-
"height": int(height)
|
| 233 |
-
})
|
| 234 |
-
|
| 235 |
-
elif operation == "Visualize Image":
|
| 236 |
-
result = await self.session.call_tool("visualize_base64_image", {"image_base64": img_base64})
|
| 237 |
-
|
| 238 |
-
else:
|
| 239 |
-
return None, "Unknown operation."
|
| 240 |
-
|
| 241 |
-
# Process the result
|
| 242 |
-
result_content = result.content
|
| 243 |
-
if isinstance(result_content, str):
|
| 244 |
-
try:
|
| 245 |
-
result_data = json.loads(result_content)
|
| 246 |
-
if "image_base64" in result_data:
|
| 247 |
-
# Convert result base64 back to image
|
| 248 |
-
img_data = base64.b64decode(result_data["image_base64"])
|
| 249 |
-
result_img = Image.open(BytesIO(img_data))
|
| 250 |
-
return result_img, "Image processed successfully."
|
| 251 |
-
else:
|
| 252 |
-
return None, f"Unexpected result format: {result_content}"
|
| 253 |
-
except json.JSONDecodeError:
|
| 254 |
-
return None, f"Error decoding result: {result_content}"
|
| 255 |
-
else:
|
| 256 |
-
return None, f"Unexpected result type: {type(result_content)}"
|
| 257 |
-
|
| 258 |
-
except Exception as e:
|
| 259 |
-
return None, f"Error processing image: {str(e)}"
|
| 260 |
-
|
| 261 |
client = MCPClientWrapper()
|
| 262 |
|
| 263 |
def gradio_interface():
|
| 264 |
-
with gr.Blocks(title="MCP
|
| 265 |
-
gr.Markdown("# MCP Assistant")
|
| 266 |
-
gr.Markdown("Connect to your MCP server
|
| 267 |
|
| 268 |
with gr.Row(equal_height=True):
|
| 269 |
with gr.Column(scale=4):
|
| 270 |
server_path = gr.Textbox(
|
| 271 |
label="Server Script Path",
|
| 272 |
-
placeholder="Enter path to server script",
|
| 273 |
-
value="
|
| 274 |
)
|
| 275 |
with gr.Column(scale=1):
|
| 276 |
connect_btn = gr.Button("Connect")
|
| 277 |
|
| 278 |
status = gr.Textbox(label="Connection Status", interactive=False)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
avatar_images=("👤", "🤖")
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
with gr.Row(equal_height=True):
|
| 291 |
-
msg = gr.Textbox(
|
| 292 |
-
label="Your Question",
|
| 293 |
-
placeholder="Ask about the available tools or how to process images",
|
| 294 |
-
scale=4
|
| 295 |
-
)
|
| 296 |
-
clear_btn = gr.Button("Clear Chat", scale=1)
|
| 297 |
-
|
| 298 |
-
with gr.TabItem("Image Processing"):
|
| 299 |
-
with gr.Row():
|
| 300 |
-
with gr.Column():
|
| 301 |
-
input_image = gr.Image(label="Input Image", type="pil")
|
| 302 |
-
operation = gr.Radio(
|
| 303 |
-
["Remove Background", "Change Format", "Resize Image", "Visualize Image"],
|
| 304 |
-
label="Select Operation",
|
| 305 |
-
value="Visualize Image"
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
with gr.Group() as format_options:
|
| 309 |
-
target_format = gr.Dropdown(
|
| 310 |
-
["png", "jpeg", "webp"],
|
| 311 |
-
label="Target Format",
|
| 312 |
-
value="png",
|
| 313 |
-
visible=False
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
with gr.Group() as resize_options:
|
| 317 |
-
with gr.Row():
|
| 318 |
-
width = gr.Number(label="Width", value=300, visible=False)
|
| 319 |
-
height = gr.Number(label="Height", value=300, visible=False)
|
| 320 |
-
|
| 321 |
-
process_btn = gr.Button("Process Image")
|
| 322 |
-
|
| 323 |
-
with gr.Column():
|
| 324 |
-
output_image = gr.Image(label="Processed Image")
|
| 325 |
-
output_message = gr.Textbox(label="Status")
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
-
|
| 331 |
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
|
| 332 |
clear_btn.click(lambda: [], None, chatbot)
|
| 333 |
|
| 334 |
-
# Image processing functionality
|
| 335 |
-
def update_options(op):
|
| 336 |
-
return {
|
| 337 |
-
target_format: op == "Change Format",
|
| 338 |
-
width: op == "Resize Image",
|
| 339 |
-
height: op == "Resize Image"
|
| 340 |
-
}
|
| 341 |
-
|
| 342 |
-
operation.change(update_options, inputs=operation, outputs=[target_format, width, height])
|
| 343 |
-
|
| 344 |
-
def process_image_wrapper(image, operation, target_format, width, height):
|
| 345 |
-
return loop.run_until_complete(client.process_image(image, operation, target_format, width, height))
|
| 346 |
-
|
| 347 |
-
process_btn.click(
|
| 348 |
-
process_image_wrapper,
|
| 349 |
-
inputs=[input_image, operation, target_format, width, height],
|
| 350 |
-
outputs=[output_image, output_message]
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
return demo
|
| 354 |
|
| 355 |
if __name__ == "__main__":
|
|
|
|
| 22 |
def __init__(self):
|
| 23 |
self.session = None
|
| 24 |
self.exit_stack = None
|
| 25 |
+
self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY"))
|
| 26 |
self.tools = []
|
| 27 |
|
| 28 |
def connect(self, server_path: str) -> str:
|
|
|
|
| 191 |
|
| 192 |
return result_messages
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
client = MCPClientWrapper()
|
| 195 |
|
| 196 |
def gradio_interface():
|
| 197 |
+
with gr.Blocks(title="MCP Weather Client") as demo:
|
| 198 |
+
gr.Markdown("# MCP Weather Assistant")
|
| 199 |
+
gr.Markdown("Connect to your MCP weather server and chat with the assistant")
|
| 200 |
|
| 201 |
with gr.Row(equal_height=True):
|
| 202 |
with gr.Column(scale=4):
|
| 203 |
server_path = gr.Textbox(
|
| 204 |
label="Server Script Path",
|
| 205 |
+
placeholder="Enter path to server script (e.g., weather.py)",
|
| 206 |
+
value="gradio_mcp_server.py"
|
| 207 |
)
|
| 208 |
with gr.Column(scale=1):
|
| 209 |
connect_btn = gr.Button("Connect")
|
| 210 |
|
| 211 |
status = gr.Textbox(label="Connection Status", interactive=False)
|
| 212 |
|
| 213 |
+
chatbot = gr.Chatbot(
|
| 214 |
+
value=[],
|
| 215 |
+
height=500,
|
| 216 |
+
type="messages",
|
| 217 |
+
show_copy_button=True,
|
| 218 |
+
avatar_images=("👤", "🤖")
|
| 219 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
with gr.Row(equal_height=True):
|
| 222 |
+
msg = gr.Textbox(
|
| 223 |
+
label="Your Question",
|
| 224 |
+
placeholder="Ask about weather or alerts (e.g., What's the weather in New York?)",
|
| 225 |
+
scale=4
|
| 226 |
+
)
|
| 227 |
+
clear_btn = gr.Button("Clear Chat", scale=1)
|
| 228 |
|
| 229 |
+
connect_btn.click(client.connect, inputs=server_path, outputs=status)
|
| 230 |
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
|
| 231 |
clear_btn.click(lambda: [], None, chatbot)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
return demo
|
| 234 |
|
| 235 |
if __name__ == "__main__":
|
gradio_interface/app.py
CHANGED
|
@@ -13,29 +13,17 @@ from langchain_openai import ChatOpenAI
|
|
| 13 |
from langchain_core.messages import HumanMessage, AIMessage
|
| 14 |
from langchain_core.callbacks import StreamingStdOutCallbackHandler
|
| 15 |
|
| 16 |
-
# Configure logging
|
| 17 |
-
logging.basicConfig(level=logging.INFO)
|
| 18 |
-
logger = logging.getLogger(__name__)
|
| 19 |
-
|
| 20 |
# Load environment
|
| 21 |
dotenv_path = os.path.join(os.path.dirname(__file__), '.env')
|
| 22 |
load_dotenv(dotenv_path=dotenv_path)
|
| 23 |
|
| 24 |
-
# Debug env
|
| 25 |
-
logger.info(f"OPENROUTER_BASE_URL: {getenv('OPENROUTER_BASE_URL')}")
|
| 26 |
-
logger.info(f"OPENROUTER_API_KEY: {'Found' if getenv('OPENROUTER_API_KEY') else 'Missing'}")
|
| 27 |
-
|
| 28 |
# Connectivity test
|
| 29 |
def test_connectivity(url="https://openrouter.helicone.ai/api/v1"):
|
| 30 |
try:
|
| 31 |
return requests.get(url, timeout=5).status_code == 200
|
| 32 |
-
except (requests.RequestException, socket.error)
|
| 33 |
-
logger.error(f"Connectivity test failed: {e}")
|
| 34 |
return False
|
| 35 |
|
| 36 |
-
if not test_connectivity():
|
| 37 |
-
logger.warning("No network to OpenRouter; responses may fail.")
|
| 38 |
-
|
| 39 |
# Helper to make direct API calls to OpenRouter when LangChain fails
|
| 40 |
def direct_api_call(messages, api_key, base_url):
|
| 41 |
headers = {
|
|
@@ -64,7 +52,6 @@ def direct_api_call(messages, api_key, base_url):
|
|
| 64 |
response.raise_for_status()
|
| 65 |
return response.json()["choices"][0]["message"]["content"]
|
| 66 |
except Exception as e:
|
| 67 |
-
logger.error(f"Direct API call failed: {e}")
|
| 68 |
return f"Error: {str(e)}"
|
| 69 |
|
| 70 |
# Initialize LLM with streaming and retry logic
|
|
@@ -86,7 +73,6 @@ def init_llm():
|
|
| 86 |
try:
|
| 87 |
llm = init_llm()
|
| 88 |
except Exception as e:
|
| 89 |
-
logger.error(f"Failed to initialize LLM: {e}")
|
| 90 |
llm = None
|
| 91 |
|
| 92 |
# Helpers
|
|
@@ -148,7 +134,6 @@ def generate_response(message, chat_history, image):
|
|
| 148 |
# First try with LangChain
|
| 149 |
if llm:
|
| 150 |
try:
|
| 151 |
-
# Try streaming first
|
| 152 |
try:
|
| 153 |
stream_iter = llm.stream(lc_messages)
|
| 154 |
partial = ""
|
|
@@ -164,7 +149,7 @@ def generate_response(message, chat_history, image):
|
|
| 164 |
# If we got this far, streaming worked
|
| 165 |
return
|
| 166 |
except Exception as e:
|
| 167 |
-
|
| 168 |
|
| 169 |
# Try non-streaming
|
| 170 |
try:
|
|
@@ -172,13 +157,10 @@ def generate_response(message, chat_history, image):
|
|
| 172 |
yield response.content
|
| 173 |
return
|
| 174 |
except Exception as e:
|
| 175 |
-
logger.warning(f"Non-streaming LangChain invoke failed: {e}")
|
| 176 |
raise e
|
| 177 |
except Exception as e:
|
| 178 |
-
|
| 179 |
|
| 180 |
-
# Fallback to direct API call
|
| 181 |
-
logger.info("Using direct API call as fallback")
|
| 182 |
response_text = direct_api_call(
|
| 183 |
api_messages,
|
| 184 |
getenv("OPENROUTER_API_KEY"),
|
|
@@ -189,8 +171,6 @@ def generate_response(message, chat_history, image):
|
|
| 189 |
except Exception as e:
|
| 190 |
import traceback
|
| 191 |
error_trace = traceback.format_exc()
|
| 192 |
-
logger.exception(f"All approaches failed during response generation: {e}")
|
| 193 |
-
logger.error(f"Full traceback: {error_trace}")
|
| 194 |
yield f"⚠️ Error al generar respuesta: {str(e)}. Intenta más tarde."
|
| 195 |
|
| 196 |
# Gradio interface
|
|
|
|
| 13 |
from langchain_core.messages import HumanMessage, AIMessage
|
| 14 |
from langchain_core.callbacks import StreamingStdOutCallbackHandler
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Load environment
|
| 17 |
dotenv_path = os.path.join(os.path.dirname(__file__), '.env')
|
| 18 |
load_dotenv(dotenv_path=dotenv_path)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Connectivity test
|
| 21 |
def test_connectivity(url="https://openrouter.helicone.ai/api/v1"):
|
| 22 |
try:
|
| 23 |
return requests.get(url, timeout=5).status_code == 200
|
| 24 |
+
except (requests.RequestException, socket.error):
|
|
|
|
| 25 |
return False
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# Helper to make direct API calls to OpenRouter when LangChain fails
|
| 28 |
def direct_api_call(messages, api_key, base_url):
|
| 29 |
headers = {
|
|
|
|
| 52 |
response.raise_for_status()
|
| 53 |
return response.json()["choices"][0]["message"]["content"]
|
| 54 |
except Exception as e:
|
|
|
|
| 55 |
return f"Error: {str(e)}"
|
| 56 |
|
| 57 |
# Initialize LLM with streaming and retry logic
|
|
|
|
| 73 |
try:
|
| 74 |
llm = init_llm()
|
| 75 |
except Exception as e:
|
|
|
|
| 76 |
llm = None
|
| 77 |
|
| 78 |
# Helpers
|
|
|
|
| 134 |
# First try with LangChain
|
| 135 |
if llm:
|
| 136 |
try:
|
|
|
|
| 137 |
try:
|
| 138 |
stream_iter = llm.stream(lc_messages)
|
| 139 |
partial = ""
|
|
|
|
| 149 |
# If we got this far, streaming worked
|
| 150 |
return
|
| 151 |
except Exception as e:
|
| 152 |
+
print(f"Streaming failed: {e}. Falling back to non-streaming mode")
|
| 153 |
|
| 154 |
# Try non-streaming
|
| 155 |
try:
|
|
|
|
| 157 |
yield response.content
|
| 158 |
return
|
| 159 |
except Exception as e:
|
|
|
|
| 160 |
raise e
|
| 161 |
except Exception as e:
|
| 162 |
+
raise e
|
| 163 |
|
|
|
|
|
|
|
| 164 |
response_text = direct_api_call(
|
| 165 |
api_messages,
|
| 166 |
getenv("OPENROUTER_API_KEY"),
|
|
|
|
| 171 |
except Exception as e:
|
| 172 |
import traceback
|
| 173 |
error_trace = traceback.format_exc()
|
|
|
|
|
|
|
| 174 |
yield f"⚠️ Error al generar respuesta: {str(e)}. Intenta más tarde."
|
| 175 |
|
| 176 |
# Gradio interface
|