File size: 20,359 Bytes
57bef45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
"""
AbMelt Complete Pipeline - Hugging Face Space Implementation
Full molecular dynamics simulation pipeline for antibody thermostability prediction
"""

import gradio as gr
import os
import sys
import logging
import tempfile
import threading
import time
import json
from pathlib import Path
import pandas as pd
import traceback

# Add src to path for imports
sys.path.insert(0, str(Path(__file__).parent / "src"))

from structure_generator import StructureGenerator
from gromacs_pipeline import GromacsPipeline, GromacsError
from descriptor_calculator import DescriptorCalculator
from ml_predictor import ThermostabilityPredictor

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class AbMeltPipeline:
    """Complete AbMelt pipeline for HF Space"""
    
    def __init__(self):
        self.structure_gen = StructureGenerator()
        self.predictor = None
        self.current_job = None
        self.job_status = {}
        
        # Initialize ML predictor
        try:
            models_dir = Path(__file__).parent / "models"
            self.predictor = ThermostabilityPredictor(models_dir)
            logger.info("ML predictor initialized")
        except Exception as e:
            logger.error(f"Failed to initialize ML predictor: {e}")
            
    def run_complete_pipeline(self, heavy_chain, light_chain, sim_time_ns=10, 
                            temperatures="300,350,400", progress_callback=None):
        """
        Run the complete AbMelt pipeline
        
        Args:
            heavy_chain (str): Heavy chain variable region sequence
            light_chain (str): Light chain variable region sequence
            sim_time_ns (int): Simulation time in nanoseconds
            temperatures (str): Comma-separated temperatures
            progress_callback (callable): Function to update progress
            
        Returns:
            dict: Results including predictions and intermediate files
        """
        results = {
            'success': False,
            'predictions': {},
            'intermediate_files': {},
            'descriptors': {},
            'error': None,
            'logs': []
        }
        
        temp_list = [int(t.strip()) for t in temperatures.split(',')]
        job_id = f"job_{int(time.time())}"
        
        try:
            # Initialize progress tracking
            if progress_callback:
                progress_callback(0, "Starting AbMelt pipeline...")
                
            # Step 1: Generate structure (10% progress)
            if progress_callback:
                progress_callback(10, "Generating antibody structure with ImmuneBuilder...")
                
            structure_path = self.structure_gen.generate_structure(
                heavy_chain, light_chain
            )
            results['intermediate_files']['structure'] = structure_path
            results['logs'].append("βœ“ Structure generation completed")
            
            # Step 2: Setup MD system (20% progress)
            if progress_callback:
                progress_callback(20, "Preparing GROMACS molecular dynamics system...")
                
            md_pipeline = GromacsPipeline()
            
            try:
                prepared_system = md_pipeline.prepare_system(structure_path)
                results['intermediate_files']['prepared_system'] = prepared_system
                results['logs'].append("βœ“ GROMACS system preparation completed")
                
                # Step 3: Run MD simulations (30-80% progress)
                if progress_callback:
                    progress_callback(30, f"Running MD simulations at {len(temp_list)} temperatures...")
                    
                trajectories = md_pipeline.run_md_simulations(
                    temperatures=temp_list, 
                    sim_time_ns=sim_time_ns
                )
                results['intermediate_files']['trajectories'] = trajectories
                results['logs'].append(f"βœ“ MD simulations completed for {len(temp_list)} temperatures")
                
                # Step 4: Calculate descriptors (80-90% progress)
                if progress_callback:
                    progress_callback(80, "Calculating molecular descriptors...")
                    
                descriptor_calc = DescriptorCalculator(md_pipeline.work_dir)
                
                # Create topology file mapping
                topology_files = {temp: os.path.join(md_pipeline.work_dir, f"md_{temp}.tpr") 
                                for temp in temp_list}
                
                descriptors = descriptor_calc.calculate_all_descriptors(
                    trajectories, topology_files
                )
                results['descriptors'] = descriptors
                results['logs'].append("βœ“ Descriptor calculation completed")
                
                # Export descriptors
                desc_csv_path = os.path.join(md_pipeline.work_dir, "descriptors.csv")
                descriptor_calc.export_descriptors_csv(descriptors, desc_csv_path)
                results['intermediate_files']['descriptors_csv'] = desc_csv_path
                
                # Step 5: Make predictions (90-100% progress)
                if progress_callback:
                    progress_callback(90, "Making thermostability predictions...")
                    
                if self.predictor:
                    predictions = self.predictor.predict_thermostability(descriptors)
                    results['predictions'] = predictions
                    results['logs'].append("βœ“ Thermostability predictions completed")
                else:
                    results['logs'].append("⚠ ML predictor not available")
                    
                if progress_callback:
                    progress_callback(100, "Pipeline completed successfully!")
                    
                results['success'] = True
                
            except GromacsError as e:
                error_msg = f"GROMACS error: {str(e)}"
                results['error'] = error_msg
                results['logs'].append(f"βœ— {error_msg}")
                logger.error(error_msg)
                
            finally:
                # Cleanup MD pipeline
                try:
                    md_pipeline.cleanup()
                except:
                    pass
                    
        except Exception as e:
            error_msg = f"Pipeline error: {str(e)}"
            results['error'] = error_msg
            results['logs'].append(f"βœ— {error_msg}")
            logger.error(f"Pipeline failed: {traceback.format_exc()}")
            
        finally:
            # Cleanup structure generator
            try:
                self.structure_gen.cleanup()
            except:
                pass
                
        return results

def create_interface():
    """Create the Gradio interface"""
    
    pipeline = AbMeltPipeline()
    
    with gr.Blocks(title="AbMelt: Complete MD Pipeline", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🧬 AbMelt: Complete Molecular Dynamics Pipeline
        
        **Predict antibody thermostability through multi-temperature molecular dynamics simulations**
        
        This space implements the complete AbMelt protocol from sequence to thermostability predictions:
        - Structure generation with ImmuneBuilder
        - Multi-temperature MD simulations (300K, 350K, 400K)
        - Comprehensive descriptor calculation
        - Machine learning predictions for Tagg, Tm,on, and Tm
        
        ⚠️ **Note**: Full pipeline takes 2-4 hours per antibody due to MD simulation requirements.
        """)
        
        with gr.Tab("πŸš€ Complete Pipeline"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Input Sequences")
                    heavy_chain = gr.Textbox(
                        label="Heavy Chain Variable Region",
                        placeholder="Enter VH amino acid sequence (e.g., QVQLVQSGAEVKKPG...)",
                        lines=3,
                        info="Variable region of heavy chain (VH)"
                    )
                    light_chain = gr.Textbox(
                        label="Light Chain Variable Region", 
                        placeholder="Enter VL amino acid sequence (e.g., DIQMTQSPSSLSASVGDR...)",
                        lines=3,
                        info="Variable region of light chain (VL)"
                    )
                    
                    gr.Markdown("### Simulation Parameters")
                    sim_time = gr.Slider(
                        minimum=10, 
                        maximum=100, 
                        value=10,
                        step=10,
                        label="Simulation time (ns)",
                        info="Longer simulations are more accurate but take more time"
                    )
                    temperatures = gr.Textbox(
                        label="Temperatures (K)",
                        value="300,350,400", 
                        info="Comma-separated temperatures for MD simulations"
                    )
                    
                with gr.Column(scale=1):
                    gr.Markdown("### Pipeline Progress")
                    status_text = gr.Textbox(
                        label="Current Status",
                        value="Ready to start...",
                        interactive=False
                    )
                    
                    run_button = gr.Button("πŸ”¬ Run Complete Pipeline", variant="primary")
                    
                    gr.Markdown("### Estimated Time")
                    time_estimate = gr.Textbox(
                        label="Estimated Completion Time",
                        value="Not calculated",
                        interactive=False
                    )
            
            with gr.Row():
                gr.Markdown("### πŸ“Š Results")
                
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### Thermostability Predictions")
                    tagg_result = gr.Number(
                        label="Tagg - Aggregation Temperature (Β°C)",
                        info="Temperature at which aggregation begins",
                        interactive=False
                    )
                    tmon_result = gr.Number(
                        label="Tm,on - Melting Temperature On-pathway (Β°C)", 
                        info="On-pathway melting temperature",
                        interactive=False
                    )
                    tm_result = gr.Number(
                        label="Tm - Overall Melting Temperature (Β°C)",
                        info="Overall thermal melting temperature",
                        interactive=False
                    )
                    
                with gr.Column():
                    gr.Markdown("#### Pipeline Logs")
                    pipeline_logs = gr.Textbox(
                        label="Execution Log",
                        lines=8,
                        info="Real-time pipeline progress and status",
                        interactive=False
                    )
                    
            with gr.Row():
                gr.Markdown("### πŸ“ Download Results")
                
            with gr.Row():
                structure_download = gr.File(
                    label="Generated Structure (PDB)"
                )
                descriptors_download = gr.File(
                    label="Calculated Descriptors (CSV)"
                )
                trajectory_info = gr.Textbox(
                    label="Trajectory Information",
                    interactive=False
                )
                
        with gr.Tab("⚑ Quick Prediction"):
            gr.Markdown("""
            ### Upload Pre-calculated Descriptors
            If you have already calculated MD descriptors, upload them here for quick predictions.
            """)
            
            descriptor_upload = gr.File(
                label="Upload Descriptor CSV",
                file_types=[".csv"]
            )
            quick_predict_btn = gr.Button("🎯 Quick Predict", variant="secondary")
            
            with gr.Row():
                quick_tagg = gr.Number(label="Tagg (Β°C)", interactive=False)
                quick_tmon = gr.Number(label="Tm,on (Β°C)", interactive=False)  
                quick_tm = gr.Number(label="Tm (Β°C)", interactive=False)
                
        with gr.Tab("πŸ“š Information"):
            gr.Markdown("""
            ### About AbMelt
            
            AbMelt is a computational protocol for predicting antibody thermostability using molecular dynamics simulations and machine learning.
            
            #### Method Overview:
            1. **Structure Generation**: Uses ImmuneBuilder to generate 3D antibody structures from sequences
            2. **System Preparation**: Prepares molecular dynamics simulation system with GROMACS
            3. **Multi-temperature MD**: Runs simulations at 300K, 350K, and 400K
            4. **Descriptor Calculation**: Computes structural and dynamic descriptors
            5. **ML Prediction**: Uses Random Forest models to predict thermostability
            
            #### Predictions:
            - **Tagg**: Aggregation temperature - when antibodies start to clump together
            - **Tm,on**: On-pathway melting temperature - structured unfolding temperature  
            - **Tm**: Overall melting temperature - general thermal stability
            
            #### Citation:
            ```
            @article{rollins2024,
                title = {{AbMelt}: {Learning} {antibody} {thermostability} from {molecular} {dynamics}},
                journal = {preprint},
                author = {Rollins, Zachary A and Widatalla, Talal and Cheng, Alan C and Metwally, Essam},
                month = feb,
                year = {2024}
            }
            ```
            
            #### Computational Requirements:
            - Full pipeline: 2-4 hours per antibody
            - Memory: ~8GB for typical antibody
            - Storage: ~2GB for trajectory files
            """)
            
        # Event handlers
        def update_time_estimate(sim_time_val, temps_str):
            try:
                temp_count = len([t.strip() for t in temps_str.split(',') if t.strip()])
                base_time_minutes = sim_time_val * temp_count * 15  # 15 min per ns per temperature
                total_time = base_time_minutes + 30  # Add overhead
                
                hours = total_time // 60
                minutes = total_time % 60
                
                if hours > 0:
                    return f"~{hours}h {minutes}m"
                else:
                    return f"~{minutes}m"
            except:
                return "Unable to estimate"
                
        def run_pipeline_wrapper(heavy, light, sim_time_val, temps_str):
            """Wrapper to run pipeline with progress updates"""
            
            # Validate inputs
            if not heavy or not light:
                return (
                    None, None, None,  # predictions
                    "❌ Error: Both heavy and light chain sequences are required",  # logs
                    None, None, None  # files
                )
                
            if len(heavy.strip()) < 50 or len(light.strip()) < 50:
                return (
                    None, None, None,
                    "❌ Error: Sequences seem too short. Please provide complete variable regions (>50 residues each)",
                    None, None, None
                )
            
            # Progress tracking
            progress_updates = []
            
            def progress_callback(percent, message):
                progress_updates.append(f"[{percent}%] {message}")
                return progress_updates
                
            try:
                # Run the pipeline
                results = pipeline.run_complete_pipeline(
                    heavy, light, sim_time_val, temps_str, progress_callback
                )
                
                # Extract results
                predictions = results.get('predictions', {})
                logs = "\\n".join(results.get('logs', []))
                
                if results.get('error'):
                    logs += f"\\n❌ {results['error']}"
                    
                # Prepare file outputs
                structure_file = results.get('intermediate_files', {}).get('structure')
                desc_file = results.get('intermediate_files', {}).get('descriptors_csv')
                traj_info = None
                
                if results.get('intermediate_files', {}).get('trajectories'):
                    traj_count = len(results['intermediate_files']['trajectories'])
                    traj_info = f"Generated {traj_count} trajectory files"
                
                # Extract prediction values
                tagg_val = predictions.get('tagg', {}).get('value')
                tmon_val = predictions.get('tmon', {}).get('value') 
                tm_val = predictions.get('tm', {}).get('value')
                
                return (
                    tagg_val, tmon_val, tm_val,  # predictions
                    logs,  # pipeline logs
                    structure_file, desc_file, traj_info  # files
                )
                
            except Exception as e:
                error_msg = f"❌ Pipeline failed: {str(e)}"
                logger.error(f"Pipeline wrapper failed: {traceback.format_exc()}")
                return (
                    None, None, None,  # predictions
                    error_msg,  # logs
                    None, None, None  # files
                )
        
        def quick_prediction(desc_file):
            """Handle quick prediction from uploaded descriptors"""
            if desc_file is None:
                return None, None, None, "Please upload a descriptor CSV file"
                
            try:
                # Load descriptors
                df = pd.read_csv(desc_file.name)
                descriptors = df.iloc[0].to_dict()  # Use first row
                
                # Make predictions
                if pipeline.predictor:
                    predictions = pipeline.predictor.predict_thermostability(descriptors)
                    
                    tagg_val = predictions.get('tagg', {}).get('value')
                    tmon_val = predictions.get('tmon', {}).get('value')
                    tm_val = predictions.get('tm', {}).get('value')
                    
                    return tagg_val, tmon_val, tm_val
                else:
                    return None, None, None
                    
            except Exception as e:
                logger.error(f"Quick prediction failed: {e}")
                return None, None, None
        
        # Connect event handlers
        sim_time.change(
            update_time_estimate,
            inputs=[sim_time, temperatures],
            outputs=time_estimate
        )
        
        temperatures.change(
            update_time_estimate,
            inputs=[sim_time, temperatures], 
            outputs=time_estimate
        )
        
        run_button.click(
            run_pipeline_wrapper,
            inputs=[heavy_chain, light_chain, sim_time, temperatures],
            outputs=[
                tagg_result, tmon_result, tm_result,  # predictions
                pipeline_logs,  # logs
                structure_download, descriptors_download, trajectory_info  # files
            ]
        )
        
        quick_predict_btn.click(
            quick_prediction,
            inputs=descriptor_upload,
            outputs=[quick_tagg, quick_tmon, quick_tm]
        )
        
        # File downloads will be shown when pipeline completes
        
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    demo.queue(max_size=3)  # Maximum queue size
    demo.launch(share=True)