# AbMelt HF Space Deployment Guide ## Complete Implementation Status ✅ This implementation provides a **FULLY FUNCTIONAL** molecular dynamics pipeline in Hugging Face Space with the following capabilities: ### ✅ Complete Pipeline Components 1. **Structure Generation**: ImmuneBuilder integration for antibody Fv generation 2. **MD System Preparation**: Complete GROMACS workflow (pdb2gmx, solvation, ionization) 3. **Multi-temperature Simulations**: Full MD at 300K, 350K, 400K with proper equilibration 4. **Descriptor Calculation**: Comprehensive analysis using GROMACS tools + MDAnalysis 5. **ML Predictions**: Integration of pre-trained Random Forest models for all targets ### ✅ Key Features - **Real MD Simulations**: Not just predictions from pre-calculated data - **Progress Tracking**: Real-time updates during long-running simulations - **Resource Management**: Intelligent queuing and memory management for HF Space - **Error Recovery**: Robust error handling and cleanup - **File Downloads**: Access to intermediate files (structures, trajectories, descriptors) ## Deployment Instructions ### 1. Pre-deployment Testing ```bash # Test the pipeline locally python test_pipeline.py # Expected output: All tests should pass # ✓ structure_generation: PASS # ✓ gromacs_installation: PASS # ✓ ml_models: PASS # ✓ quick_pipeline: PASS ``` ### 2. Hugging Face Space Configuration Create a new HF Space with these settings: - **Space Type**: Gradio - **SDK Version**: 4.44.0 - **Hardware**: CPU Upgrade (recommended for MD simulations) - **Persistent Storage**: Enable for temporary files ### 3. Required Files for Deployment Copy these files to your HF Space repository: ``` ├── app.py # Main Gradio application ├── requirements.txt # Python dependencies ├── packages.txt # System packages (GROMACS) ├── Dockerfile # Container configuration ├── README.md # Documentation ├── metadata.json # HF Space metadata ├── src/ # Source code modules │ ├── structure_generator.py │ ├── gromacs_pipeline.py │ ├── descriptor_calculator.py │ ├── ml_predictor.py │ └── resource_manager.py └── models/ # Pre-trained ML models ├── tagg/ ├── tm/ └── tmon/ ``` ### 4. Environment Variables (Optional) Set these in HF Space settings if needed: ``` GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 PYTHONPATH=/app/src ``` ### 5. Hardware Requirements **Minimum Requirements:** - CPU: 4 cores - RAM: 8GB - Disk: 20GB - Time: 2-4 hours per antibody **Recommended for Production:** - CPU Upgrade (8 cores) - RAM: 16GB - Disk: 50GB - Concurrent Users: 1-2 (due to MD simulation intensity) ## Usage Instructions ### Input Requirements 1. **Heavy Chain Variable Region**: Complete VH sequence (typically 110-130 residues) 2. **Light Chain Variable Region**: Complete VL sequence (typically 100-110 residues) 3. **Simulation Parameters**: Time (10-100ns) and temperatures (300,350,400K) ### Expected Runtime - **Quick Test (10ns)**: ~30-60 minutes - **Standard Run (50ns)**: ~2-3 hours - **Full Run (100ns)**: ~4-6 hours ### Output Files Users can download: - **Generated Structure** (PDB format) - **MD Trajectories** (XTC format, compressed) - **Calculated Descriptors** (CSV format) - **Predictions Summary** (JSON format) ## Implementation Highlights ### 🔬 Complete MD Workflow The pipeline executes every step of the AbMelt protocol: 1. **Structure Generation**: ```python # Uses ImmuneBuilder for Fv prediction structure_path = generator.generate_structure(heavy_chain, light_chain) ``` 2. **System Preparation**: ```python # Complete GROMACS preparation prepared_system = md_pipeline.prepare_system(structure_path) # Includes: pdb2gmx, solvation, ionization, energy minimization ``` 3. **MD Simulations**: ```python # Multi-temperature simulations trajectories = md_pipeline.run_md_simulations([300, 350, 400], sim_time_ns) # Includes: NVT equilibration, NPT equilibration, production MD ``` 4. **Descriptor Calculation**: ```python # Comprehensive analysis descriptors = descriptor_calc.calculate_all_descriptors(trajectories, topology_files) # Includes: SASA, H-bonds, RMSF, Rg, order parameters ``` 5. **ML Predictions**: ```python # Use pre-trained models predictions = predictor.predict_thermostability(descriptors) # Returns: Tagg, Tm,on, Tm with confidence estimates ``` ### 🛠️ Technical Architecture - **Modular Design**: Separate classes for each pipeline component - **Error Handling**: Comprehensive try-catch with informative messages - **Resource Management**: Memory and disk usage monitoring - **Progress Tracking**: Real-time updates via Gradio interface - **Cleanup**: Automatic temporary file removal ### 🚦 Quality Assurance - **Input Validation**: Sequence format and length checking - **Intermediate Verification**: File existence and size validation - **Error Recovery**: Graceful handling of GROMACS/ImmuneBuilder failures - **Resource Monitoring**: Automatic cleanup of long-running jobs ## Troubleshooting ### Common Issues 1. **GROMACS Not Found** - Ensure packages.txt includes gromacs installation - Check Dockerfile has correct system dependencies 2. **Memory Issues** - Reduce simulation time for initial testing - Enable HF Space persistent storage - Monitor resource usage in logs 3. **Long Queue Times** - Pipeline limits to 1 concurrent user due to MD intensity - Consider upgrading to CPU+ hardware tier 4. **ImmuneBuilder Errors** - Validate input sequences are complete variable regions - Check for non-standard amino acid characters ### Performance Optimization - **Simulation Length**: Start with 10ns for testing, scale to 100ns for production - **Temperature Selection**: Use default 300,350,400K for best model performance - **Hardware**: CPU Upgrade significantly improves performance - **Queue Management**: Implemented automatic job queuing and resource monitoring ## Success Metrics The deployment is successful when: ✅ Users can input antibody sequences ✅ Complete MD simulations run without errors ✅ All descriptors are calculated correctly ✅ ML models produce valid predictions ✅ Intermediate files are downloadable ✅ Pipeline completes within expected timeframes This implementation delivers a fully functional research-grade molecular dynamics pipeline accessible through a user-friendly web interface, making advanced antibody thermostability prediction available to the broader scientific community.