Upload folder using huggingface_hub
Browse files- app.py +157 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, re, json, shutil, tempfile
|
| 2 |
+
from typing import Dict, Any, List, Optional, Tuple
|
| 3 |
+
import requests
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
try:
|
| 7 |
+
from huggingface_hub import HfApi, create_repo, upload_folder, whoami
|
| 8 |
+
except Exception as e:
|
| 9 |
+
HfApi = None # Will error at runtime with a clear message
|
| 10 |
+
|
| 11 |
+
CIVITAI_API_TOKEN = os.getenv("CIVITAI_API_TOKEN", "").strip()
|
| 12 |
+
COOKIE_INFO = os.getenv("COOKIE_INFO", "").strip()
|
| 13 |
+
|
| 14 |
+
BASE_MODEL_MAP: Dict[str, str] = {
|
| 15 |
+
"sd 1.4": "CompVis/stable-diffusion-v1-4",
|
| 16 |
+
"sd 1.5": "runwayml/stable-diffusion-v1-5",
|
| 17 |
+
"sd 2.1": "stabilityai/stable-diffusion-2-1",
|
| 18 |
+
"sdxl": "stabilityai/stable-diffusion-xl-base-1.0",
|
| 19 |
+
"sdxl 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
|
| 20 |
+
"flux.1 dev": "black-forest-labs/FLUX.1-dev",
|
| 21 |
+
"flux.1 schnell": "black-forest-labs/FLUX.1-schnell",
|
| 22 |
+
"flux": "black-forest-labs/FLUX.1-dev",
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
LICENSE_ALLOWLIST = {
|
| 26 |
+
"cc0-1.0", "cc0", "mit", "apache-2.0", "bsd-3-clause", "bsd-2-clause",
|
| 27 |
+
"openrail", "openrail+", "openrail++", "bigscience-openrail-m",
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
def _slugify(s: str, maxlen: int = 64) -> str:
|
| 31 |
+
s = s.strip().lower()
|
| 32 |
+
s = re.sub(r"[^a-z0-9\-_]+", "-", s)
|
| 33 |
+
s = re.sub(r"-{2,}", "-", s).strip("-")
|
| 34 |
+
if not s:
|
| 35 |
+
s = "model"
|
| 36 |
+
return s[:maxlen]
|
| 37 |
+
|
| 38 |
+
def http_get(url: str, stream: bool = False):
|
| 39 |
+
headers = {"User-Agent": "HF-Space-CivitAI-Importer/1.0"}
|
| 40 |
+
if COOKIE_INFO:
|
| 41 |
+
headers["Cookie"] = COOKIE_INFO
|
| 42 |
+
if CIVITAI_API_TOKEN:
|
| 43 |
+
headers["Authorization"] = f"Bearer {CIVITAI_API_TOKEN}"
|
| 44 |
+
resp = requests.get(url, headers=headers, stream=stream, timeout=60)
|
| 45 |
+
resp.raise_for_status()
|
| 46 |
+
return resp
|
| 47 |
+
|
| 48 |
+
def parse_civitai_model_id(url: str) -> Optional[str]:
|
| 49 |
+
m = re.search(r"civitai\.com/(?:models|api/v1/models)/(\d+)", url)
|
| 50 |
+
return m.group(1) if m else None
|
| 51 |
+
|
| 52 |
+
def fetch_civitai_model_json(url: str) -> Dict[str, Any]:
|
| 53 |
+
mid = parse_civitai_model_id(url)
|
| 54 |
+
if not mid:
|
| 55 |
+
raise gr.Error("Invalid CivitAI model URL.")
|
| 56 |
+
api_url = f"https://civitai.com/api/v1/models/{mid}"
|
| 57 |
+
return http_get(api_url).json()
|
| 58 |
+
|
| 59 |
+
def detect_nsfw(model_json: Dict[str, Any]) -> bool:
|
| 60 |
+
try:
|
| 61 |
+
if model_json.get("nsfw", False):
|
| 62 |
+
return True
|
| 63 |
+
if int(model_json.get("nsfwLevel") or 0) != 0:
|
| 64 |
+
return True
|
| 65 |
+
for mv in model_json.get("modelVersions", []):
|
| 66 |
+
if int(mv.get("nsfwLevel") or 0) != 0:
|
| 67 |
+
return True
|
| 68 |
+
for im in mv.get("images", []):
|
| 69 |
+
if int(im.get("nsfwLevel") or 0) != 0:
|
| 70 |
+
return True
|
| 71 |
+
return False
|
| 72 |
+
except Exception:
|
| 73 |
+
return True
|
| 74 |
+
|
| 75 |
+
def guess_base_model(model_json: Dict[str, Any]) -> Tuple[str, bool]:
|
| 76 |
+
base = ""
|
| 77 |
+
is_video = False
|
| 78 |
+
if "modelVersions" in model_json and model_json["modelVersions"]:
|
| 79 |
+
mv0 = model_json["modelVersions"][0]
|
| 80 |
+
base = (mv0.get("baseModel") or "").strip().lower()
|
| 81 |
+
is_video = "video" in base or "hunyuan" in base or "wan" in base
|
| 82 |
+
hf = BASE_MODEL_MAP.get(base, "stabilityai/stable-diffusion-xl-base-1.0")
|
| 83 |
+
return hf, is_video
|
| 84 |
+
|
| 85 |
+
def pick_primary_weight(model_json: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
| 86 |
+
candidates = []
|
| 87 |
+
for mv in model_json.get("modelVersions", []):
|
| 88 |
+
for f in mv.get("files", []):
|
| 89 |
+
url = f.get("downloadUrl") or f.get("url") or ""
|
| 90 |
+
if url.endswith(".safetensors"):
|
| 91 |
+
size = int(f.get("sizeKB", 0))
|
| 92 |
+
candidates.append((size, f))
|
| 93 |
+
if not candidates:
|
| 94 |
+
return None
|
| 95 |
+
candidates.sort(key=lambda x: x[0], reverse=True)
|
| 96 |
+
return candidates[0][1]
|
| 97 |
+
|
| 98 |
+
def download_file(url: str, dest: str):
|
| 99 |
+
r = http_get(url, stream=True)
|
| 100 |
+
with open(dest, "wb") as f:
|
| 101 |
+
for chunk in r.iter_content(chunk_size=1024 * 512):
|
| 102 |
+
if chunk: f.write(chunk)
|
| 103 |
+
|
| 104 |
+
def collect_previews(model_json: Dict[str, Any], dest_dir: str, max_items=6) -> List[str]:
|
| 105 |
+
paths = []
|
| 106 |
+
count = 0
|
| 107 |
+
for mv in model_json.get("modelVersions", []):
|
| 108 |
+
for im in mv.get("images", []):
|
| 109 |
+
if count >= max_items: break
|
| 110 |
+
url = im.get("url") or im.get("urlSmall") or ""
|
| 111 |
+
if not url: continue
|
| 112 |
+
ext = os.path.splitext(url.split("?")[0])[1] or ".jpg"
|
| 113 |
+
name = f"preview_{count+1}{ext}"
|
| 114 |
+
p = os.path.join(dest_dir, name)
|
| 115 |
+
try:
|
| 116 |
+
download_file(url, p)
|
| 117 |
+
paths.append(p); count += 1
|
| 118 |
+
except: continue
|
| 119 |
+
if count >= max_items: break
|
| 120 |
+
return paths
|
| 121 |
+
|
| 122 |
+
def extract_trained_words(model_json: Dict[str, Any]) -> List[str]:
|
| 123 |
+
words = []
|
| 124 |
+
for mv in model_json.get("modelVersions", []):
|
| 125 |
+
for w in (mv.get("trainedWords") or []):
|
| 126 |
+
if isinstance(w, str) and w.strip():
|
| 127 |
+
words.append(w.strip())
|
| 128 |
+
return list(dict.fromkeys(words))
|
| 129 |
+
|
| 130 |
+
def build_readme(out_dir: str, repo_name: str, model_json: Dict[str, Any],
|
| 131 |
+
hf_base_model: str, is_video: bool, is_nsfw: bool,
|
| 132 |
+
weight_filename: Optional[str], previews: List[str]) -> None:
|
| 133 |
+
name = model_json.get("name") or f"CivitAI-{model_json.get('id','model')}"
|
| 134 |
+
trained_words = extract_trained_words(model_json)
|
| 135 |
+
|
| 136 |
+
tags = ["lora","diffusers"]
|
| 137 |
+
if is_video: tags.append("video")
|
| 138 |
+
else: tags += ["text-to-image","stable-diffusion","template:sd-lora"]
|
| 139 |
+
if is_nsfw: tags.append("not-for-all-audiences")
|
| 140 |
+
|
| 141 |
+
yaml_header = f"""---
|
| 142 |
+
tags:
|
| 143 |
+
- {'\n - '.join(sorted(set(tags)))}
|
| 144 |
+
base_model: {hf_base_model}
|
| 145 |
+
instance_prompt: {trained_words[0] if trained_words else ''}
|
| 146 |
+
---
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
diffusers_md = f"""
|
| 150 |
+
```py
|
| 151 |
+
from diffusers import AutoPipelineForText2Image
|
| 152 |
+
import torch
|
| 153 |
+
|
| 154 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 155 |
+
pipe = AutoPipelineForText2Image.from_pretrained("{hf_base_model}").to(device)
|
| 156 |
+
pipe.load_lora_weights("{repo_name}", weight_name="{weight_filename or 'your_lora.safetensors'}")
|
| 157 |
+
image = pipe("{trained_words[0] if trained_words else 'A sample prompt'}").images[0]
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python-slugify
|
| 2 |
+
selenium
|
| 3 |
+
webdriver-manager
|
| 4 |
+
huggingface-hub==0.22.2
|
| 5 |
+
beautifulsoup4
|