Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,756 +1,756 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import PyPDF2
|
| 3 |
-
import chromadb
|
| 4 |
-
from openai import OpenAI
|
| 5 |
-
import numpy as np
|
| 6 |
-
from typing import List, Dict, Tuple
|
| 7 |
-
import json
|
| 8 |
-
import io
|
| 9 |
-
import os
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
import pandas as pd
|
| 12 |
-
|
| 13 |
-
class RAGPipeline:
|
| 14 |
-
def __init__(self):
|
| 15 |
-
# Initialize local ChromaDB client using new configuration
|
| 16 |
-
try:
|
| 17 |
-
self.chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
| 18 |
-
except Exception as e:
|
| 19 |
-
print(f"ChromaDB initialization error: {e}")
|
| 20 |
-
self.chroma_client = None
|
| 21 |
-
|
| 22 |
-
# OpenAI client (will be set through UI)
|
| 23 |
-
self.openai_client = None
|
| 24 |
-
self.openai_api_key = None
|
| 25 |
-
|
| 26 |
-
# Collection for storing document chunks
|
| 27 |
-
self.collection = None
|
| 28 |
-
|
| 29 |
-
# Store document metadata and full text
|
| 30 |
-
self.document_metadata = {}
|
| 31 |
-
self.full_extracted_text = "" # Store full text here
|
| 32 |
-
|
| 33 |
-
def set_openai_key(self, openai_key: str):
|
| 34 |
-
"""Set OpenAI API key and create client"""
|
| 35 |
-
self.openai_api_key = openai_key
|
| 36 |
-
|
| 37 |
-
if openai_key:
|
| 38 |
-
self.openai_client = OpenAI(api_key=openai_key)
|
| 39 |
-
|
| 40 |
-
def get_openai_embedding(self, text: str) -> List[float]:
|
| 41 |
-
"""Generate embeddings using OpenAI's text-embedding-ada-002 model"""
|
| 42 |
-
if not self.openai_client:
|
| 43 |
-
raise ValueError("OpenAI client not initialized")
|
| 44 |
-
|
| 45 |
-
try:
|
| 46 |
-
response = self.openai_client.embeddings.create(
|
| 47 |
-
model="text-embedding-ada-002",
|
| 48 |
-
input=text
|
| 49 |
-
)
|
| 50 |
-
return response.data[0].embedding
|
| 51 |
-
except Exception as e:
|
| 52 |
-
raise Exception(f"OpenAI embedding generation failed: {str(e)}")
|
| 53 |
-
|
| 54 |
-
def extract_text_from_pdf(self, pdf_file) -> Tuple[str, Dict]:
|
| 55 |
-
"""Extract text from uploaded PDF file"""
|
| 56 |
-
try:
|
| 57 |
-
# Handle different file types from Gradio
|
| 58 |
-
if hasattr(pdf_file, 'name'):
|
| 59 |
-
# If it's a file path, read the file
|
| 60 |
-
with open(pdf_file.name, 'rb') as file:
|
| 61 |
-
pdf_content = file.read()
|
| 62 |
-
elif isinstance(pdf_file, bytes):
|
| 63 |
-
# If it's already bytes
|
| 64 |
-
pdf_content = pdf_file
|
| 65 |
-
else:
|
| 66 |
-
# If it's a file-like object, read it
|
| 67 |
-
pdf_content = pdf_file.read() if hasattr(pdf_file, 'read') else pdf_file
|
| 68 |
-
|
| 69 |
-
# Read PDF file
|
| 70 |
-
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_content))
|
| 71 |
-
|
| 72 |
-
text = ""
|
| 73 |
-
page_count = len(pdf_reader.pages)
|
| 74 |
-
|
| 75 |
-
# Extract text from all pages
|
| 76 |
-
for page_num, page in enumerate(pdf_reader.pages):
|
| 77 |
-
page_text = page.extract_text()
|
| 78 |
-
if page_text.strip(): # Only add non-empty pages
|
| 79 |
-
text += f"\n--- Page {page_num + 1} ---\n"
|
| 80 |
-
text += page_text + "\n"
|
| 81 |
-
|
| 82 |
-
# Clean up the text
|
| 83 |
-
text = text.strip()
|
| 84 |
-
|
| 85 |
-
# Store the full text in the pipeline object
|
| 86 |
-
self.full_extracted_text = text
|
| 87 |
-
print(f"DEBUG: Stored full text length: {len(self.full_extracted_text)}")
|
| 88 |
-
|
| 89 |
-
# Create extraction metadata
|
| 90 |
-
metadata = {
|
| 91 |
-
"total_pages": page_count,
|
| 92 |
-
"total_characters": len(text),
|
| 93 |
-
"extraction_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 94 |
-
"file_size_bytes": len(pdf_content),
|
| 95 |
-
"pages_with_text": sum(1 for page in pdf_reader.pages if page.extract_text().strip()),
|
| 96 |
-
"average_chars_per_page": len(text) // page_count if page_count > 0 else 0
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
return text, metadata
|
| 100 |
-
|
| 101 |
-
except Exception as e:
|
| 102 |
-
return f"Error extracting PDF: {str(e)}", {}
|
| 103 |
-
|
| 104 |
-
def chunk_text(self, text: str, chunk_size: int = 1000, overlap: int = 200) -> Tuple[List[str], Dict]:
|
| 105 |
-
"""Split text into overlapping chunks"""
|
| 106 |
-
if not text or len(text.strip()) == 0:
|
| 107 |
-
return [], {"error": "No text provided for chunking"}
|
| 108 |
-
|
| 109 |
-
# Clean the text first
|
| 110 |
-
text = text.strip()
|
| 111 |
-
|
| 112 |
-
chunks = []
|
| 113 |
-
start = 0
|
| 114 |
-
|
| 115 |
-
print(f"DEBUG: Starting chunking with text length: {len(text)}")
|
| 116 |
-
print(f"DEBUG: Chunk size: {chunk_size}, Overlap: {overlap}")
|
| 117 |
-
|
| 118 |
-
while start < len(text):
|
| 119 |
-
end = start + chunk_size
|
| 120 |
-
|
| 121 |
-
# If we're not at the end, try to break at a sentence or word boundary
|
| 122 |
-
if end < len(text):
|
| 123 |
-
# Look for sentence boundary
|
| 124 |
-
last_period = text.rfind('.', start, end)
|
| 125 |
-
last_newline = text.rfind('\n', start, end)
|
| 126 |
-
last_space = text.rfind(' ', start, end)
|
| 127 |
-
|
| 128 |
-
# Choose the best breaking point
|
| 129 |
-
break_point = max(last_period, last_newline, last_space)
|
| 130 |
-
if break_point > start:
|
| 131 |
-
end = break_point + 1
|
| 132 |
-
|
| 133 |
-
chunk = text[start:end].strip()
|
| 134 |
-
if chunk and len(chunk) > 50: # Only add meaningful chunks
|
| 135 |
-
chunks.append(chunk)
|
| 136 |
-
print(f"DEBUG: Added chunk {len(chunks)}: length={len(chunk)}")
|
| 137 |
-
|
| 138 |
-
# Move start position
|
| 139 |
-
if end >= len(text):
|
| 140 |
-
break
|
| 141 |
-
start = end - overlap
|
| 142 |
-
|
| 143 |
-
# Prevent infinite loop
|
| 144 |
-
if start >= end:
|
| 145 |
-
start = end
|
| 146 |
-
|
| 147 |
-
print(f"DEBUG: Final chunks count: {len(chunks)}")
|
| 148 |
-
|
| 149 |
-
# Create chunking metadata
|
| 150 |
-
chunk_lengths = [len(chunk) for chunk in chunks]
|
| 151 |
-
metadata = {
|
| 152 |
-
"total_chunks": len(chunks),
|
| 153 |
-
"chunk_size": chunk_size,
|
| 154 |
-
"overlap": overlap,
|
| 155 |
-
"avg_chunk_length": np.mean(chunk_lengths) if chunks else 0,
|
| 156 |
-
"min_chunk_length": min(chunk_lengths) if chunks else 0,
|
| 157 |
-
"max_chunk_length": max(chunk_lengths) if chunks else 0,
|
| 158 |
-
"total_text_length": len(text),
|
| 159 |
-
"chunking_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
return chunks, metadata
|
| 163 |
-
|
| 164 |
-
def store_in_chromadb(self, chunks: List[str], document_name: str) -> Dict:
|
| 165 |
-
"""Store chunks in ChromaDB with OpenAI embeddings"""
|
| 166 |
-
if not self.openai_client:
|
| 167 |
-
return {"error": "OpenAI client not initialized for embedding generation"}
|
| 168 |
-
|
| 169 |
-
try:
|
| 170 |
-
# Create or get collection
|
| 171 |
-
collection_name = f"financial_docs_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 172 |
-
|
| 173 |
-
try:
|
| 174 |
-
self.chroma_client.delete_collection(collection_name)
|
| 175 |
-
except:
|
| 176 |
-
pass
|
| 177 |
-
|
| 178 |
-
self.collection = self.chroma_client.create_collection(
|
| 179 |
-
name=collection_name,
|
| 180 |
-
metadata={"hnsw:space": "cosine"}
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# Generate embeddings for chunks using OpenAI
|
| 184 |
-
embeddings = []
|
| 185 |
-
embedding_metadata = {
|
| 186 |
-
"model_used": "text-embedding-ada-002",
|
| 187 |
-
"total_chunks_processed": len(chunks),
|
| 188 |
-
"embedding_start_time": datetime.now().isoformat()
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
for i, chunk in enumerate(chunks):
|
| 192 |
-
try:
|
| 193 |
-
embedding = self.get_openai_embedding(chunk)
|
| 194 |
-
embeddings.append(embedding)
|
| 195 |
-
except Exception as e:
|
| 196 |
-
return {"error": f"Failed to generate embedding for chunk {i}: {str(e)}"}
|
| 197 |
-
|
| 198 |
-
embedding_metadata["embedding_end_time"] = datetime.now().isoformat()
|
| 199 |
-
embedding_metadata["embedding_dimension"] = len(embeddings[0]) if embeddings else 0
|
| 200 |
-
|
| 201 |
-
# Create unique IDs for each chunk
|
| 202 |
-
ids = [f"chunk_{i}" for i in range(len(chunks))]
|
| 203 |
-
|
| 204 |
-
# Create metadata for each chunk
|
| 205 |
-
metadatas = [
|
| 206 |
-
{
|
| 207 |
-
"chunk_id": i,
|
| 208 |
-
"document_name": document_name,
|
| 209 |
-
"chunk_length": len(chunk),
|
| 210 |
-
"created_at": datetime.now().isoformat(),
|
| 211 |
-
"embedding_model": "text-embedding-ada-002"
|
| 212 |
-
}
|
| 213 |
-
for i, chunk in enumerate(chunks)
|
| 214 |
-
]
|
| 215 |
-
|
| 216 |
-
# Store in ChromaDB
|
| 217 |
-
self.collection.add(
|
| 218 |
-
embeddings=embeddings,
|
| 219 |
-
documents=chunks,
|
| 220 |
-
metadatas=metadatas,
|
| 221 |
-
ids=ids
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
# Create storage metadata
|
| 225 |
-
storage_metadata = {
|
| 226 |
-
"collection_name": collection_name,
|
| 227 |
-
"total_vectors_stored": len(chunks),
|
| 228 |
-
"embedding_dimension": len(embeddings[0]) if embeddings else 0,
|
| 229 |
-
"embedding_model": "text-embedding-ada-002",
|
| 230 |
-
"storage_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 231 |
-
"database_status": "Successfully stored",
|
| 232 |
-
"database_type": "ChromaDB Local",
|
| 233 |
-
"database_path": "./chroma_db",
|
| 234 |
-
"embedding_metadata": embedding_metadata
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
return storage_metadata
|
| 238 |
-
|
| 239 |
-
except Exception as e:
|
| 240 |
-
return {"error": f"Storage failed: {str(e)}"}
|
| 241 |
-
|
| 242 |
-
def semantic_search(self, query: str, top_k: int = 5) -> Tuple[List[Dict], Dict]:
|
| 243 |
-
"""Perform semantic search using OpenAI embeddings and return top-k results"""
|
| 244 |
-
if not self.collection:
|
| 245 |
-
return [], {"error": "No collection available. Please upload and process a document first."}
|
| 246 |
-
|
| 247 |
-
if not self.openai_client:
|
| 248 |
-
return [], {"error": "OpenAI client not initialized for query embedding generation"}
|
| 249 |
-
|
| 250 |
-
try:
|
| 251 |
-
# Generate query embedding using OpenAI
|
| 252 |
-
query_embedding = self.get_openai_embedding(query)
|
| 253 |
-
|
| 254 |
-
# Search in ChromaDB
|
| 255 |
-
results = self.collection.query(
|
| 256 |
-
query_embeddings=[query_embedding],
|
| 257 |
-
n_results=top_k,
|
| 258 |
-
include=['documents', 'metadatas', 'distances']
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Format results
|
| 262 |
-
search_results = []
|
| 263 |
-
for i in range(len(results['documents'][0])):
|
| 264 |
-
result = {
|
| 265 |
-
"chunk_id": results['metadatas'][0][i]['chunk_id'],
|
| 266 |
-
"similarity_score": 1 - results['distances'][0][i], # Convert distance to similarity
|
| 267 |
-
"content": results['documents'][0][i][:500] + "..." if len(results['documents'][0][i]) > 500 else results['documents'][0][i],
|
| 268 |
-
"full_content": results['documents'][0][i],
|
| 269 |
-
"metadata": results['metadatas'][0][i]
|
| 270 |
-
}
|
| 271 |
-
search_results.append(result)
|
| 272 |
-
|
| 273 |
-
# Create search metadata
|
| 274 |
-
search_metadata = {
|
| 275 |
-
"query": query,
|
| 276 |
-
"results_found": len(search_results),
|
| 277 |
-
"search_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 278 |
-
"top_similarity_score": max([r["similarity_score"] for r in search_results]) if search_results else 0,
|
| 279 |
-
"query_embedding_model": "text-embedding-ada-002",
|
| 280 |
-
"vector_database": "ChromaDB Local"
|
| 281 |
-
}
|
| 282 |
-
|
| 283 |
-
return search_results, search_metadata
|
| 284 |
-
|
| 285 |
-
except Exception as e:
|
| 286 |
-
return [], {"error": f"Search failed: {str(e)}"}
|
| 287 |
-
|
| 288 |
-
def generate_llm_response(self, query: str, search_results: List[Dict]) -> Tuple[str, Dict]:
|
| 289 |
-
"""Generate final response using OpenAI LLM"""
|
| 290 |
-
if not self.openai_client:
|
| 291 |
-
return "OpenAI client not initialized for LLM response generation.", {}
|
| 292 |
-
|
| 293 |
-
try:
|
| 294 |
-
# Prepare context from search results
|
| 295 |
-
context = "\n\n".join([
|
| 296 |
-
f"Chunk {result['chunk_id']} (Similarity: {result['similarity_score']:.3f}):\n{result['full_content']}"
|
| 297 |
-
for result in search_results
|
| 298 |
-
])
|
| 299 |
-
|
| 300 |
-
# Create prompt
|
| 301 |
-
prompt = f"""Based on the following financial document excerpts, please provide a comprehensive and accurate answer to the user's question.
|
| 302 |
-
|
| 303 |
-
Context from financial document:
|
| 304 |
-
{context}
|
| 305 |
-
|
| 306 |
-
User Question: {query}
|
| 307 |
-
|
| 308 |
-
Instructions:
|
| 309 |
-
1. Provide a detailed, well-structured answer based solely on the provided context
|
| 310 |
-
2. If the context doesn't contain enough information to fully answer the question, clearly state this
|
| 311 |
-
3. Include specific numbers, dates, and financial figures when available
|
| 312 |
-
4. Structure your response clearly with proper formatting
|
| 313 |
-
5. Cite which chunk(s) your information comes from when possible
|
| 314 |
-
|
| 315 |
-
Answer:"""
|
| 316 |
-
|
| 317 |
-
# Generate response using OpenAI
|
| 318 |
-
response = self.openai_client.chat.completions.create(
|
| 319 |
-
model="gpt-3.5-turbo",
|
| 320 |
-
messages=[
|
| 321 |
-
{"role": "system", "content": "You are a financial analyst AI assistant. Provide accurate, well-structured responses based on the given financial document context."},
|
| 322 |
-
{"role": "user", "content": prompt}
|
| 323 |
-
],
|
| 324 |
-
max_tokens=1000,
|
| 325 |
-
temperature=0.1
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
-
llm_response = response.choices[0].message.content
|
| 329 |
-
|
| 330 |
-
# Create response metadata
|
| 331 |
-
response_metadata = {
|
| 332 |
-
"model_used": "gpt-3.5-turbo",
|
| 333 |
-
"response_length": len(llm_response),
|
| 334 |
-
"tokens_used": response.usage.total_tokens,
|
| 335 |
-
"prompt_tokens": response.usage.prompt_tokens,
|
| 336 |
-
"completion_tokens": response.usage.completion_tokens,
|
| 337 |
-
"generation_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 338 |
-
"context_chunks_used": len(search_results),
|
| 339 |
-
"temperature": 0.1,
|
| 340 |
-
"max_tokens": 1000
|
| 341 |
-
}
|
| 342 |
-
|
| 343 |
-
return llm_response, response_metadata
|
| 344 |
-
|
| 345 |
-
except Exception as e:
|
| 346 |
-
return f"LLM Generation failed: {str(e)}", {"error": str(e)}
|
| 347 |
-
|
| 348 |
-
# Initialize RAG pipeline
|
| 349 |
-
rag_pipeline = RAGPipeline()
|
| 350 |
-
|
| 351 |
-
def configure_openai_api(openai_key):
|
| 352 |
-
"""Configure OpenAI API key"""
|
| 353 |
-
try:
|
| 354 |
-
# Set OpenAI API key
|
| 355 |
-
rag_pipeline.set_openai_key(openai_key)
|
| 356 |
-
|
| 357 |
-
# Test OpenAI connection
|
| 358 |
-
if openai_key:
|
| 359 |
-
try:
|
| 360 |
-
# Test with a simple API call
|
| 361 |
-
test_response = rag_pipeline.openai_client.models.list()
|
| 362 |
-
openai_status = "β
OpenAI API key validated successfully"
|
| 363 |
-
except Exception as e:
|
| 364 |
-
openai_status = f"β OpenAI API key validation failed: {str(e)}"
|
| 365 |
-
else:
|
| 366 |
-
openai_status = "β OpenAI API key required"
|
| 367 |
-
|
| 368 |
-
# ChromaDB status (local setup)
|
| 369 |
-
if rag_pipeline.chroma_client:
|
| 370 |
-
chroma_status = "β
ChromaDB Local database ready (./chroma_db)"
|
| 371 |
-
else:
|
| 372 |
-
chroma_status = "β ChromaDB Local database initialization failed"
|
| 373 |
-
|
| 374 |
-
return f"{openai_status}\n{chroma_status}"
|
| 375 |
-
|
| 376 |
-
except Exception as e:
|
| 377 |
-
return f"β Configuration failed: {str(e)}"
|
| 378 |
-
|
| 379 |
-
# Remove the global variable since we're storing in the class
|
| 380 |
-
# extracted_text_store = ""
|
| 381 |
-
|
| 382 |
-
def process_pdf_upload(pdf_file):
|
| 383 |
-
"""Process uploaded PDF and extract text"""
|
| 384 |
-
if pdf_file is None:
|
| 385 |
-
return "No file uploaded", "{}"
|
| 386 |
-
|
| 387 |
-
# Extract text using the updated method
|
| 388 |
-
text, metadata = rag_pipeline.extract_text_from_pdf(pdf_file)
|
| 389 |
-
|
| 390 |
-
if text.startswith("Error"):
|
| 391 |
-
return text, json.dumps(metadata, indent=2)
|
| 392 |
-
|
| 393 |
-
# Show more text in preview (first 3000 characters instead of 2000)
|
| 394 |
-
preview_text = text[:3000] + f"...\n\n[SHOWING FIRST 3000 CHARACTERS OF {len(text)} TOTAL CHARACTERS]\n[FULL TEXT STORED FOR PROCESSING - Total Length: {len(rag_pipeline.full_extracted_text)} chars]" if len(text) > 3000 else text
|
| 395 |
-
|
| 396 |
-
return preview_text, json.dumps(metadata, indent=2)
|
| 397 |
-
|
| 398 |
-
def process_chunking(text, chunk_size, overlap):
|
| 399 |
-
"""Process text chunking"""
|
| 400 |
-
# Always use the full text stored in the pipeline object
|
| 401 |
-
if not rag_pipeline.full_extracted_text:
|
| 402 |
-
return "No text available for chunking. Please upload a PDF first.", "{}"
|
| 403 |
-
|
| 404 |
-
full_text = rag_pipeline.full_extracted_text
|
| 405 |
-
print(f"DEBUG: Using full text for chunking, length: {len(full_text)}")
|
| 406 |
-
|
| 407 |
-
if len(full_text.strip()) == 0:
|
| 408 |
-
return "No valid text available for chunking.", "{}"
|
| 409 |
-
|
| 410 |
-
chunks, metadata = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
|
| 411 |
-
|
| 412 |
-
if not chunks:
|
| 413 |
-
return "No chunks created. Please check your text and parameters.", json.dumps(metadata, indent=2)
|
| 414 |
-
|
| 415 |
-
# Display first few chunks as preview
|
| 416 |
-
preview = f"=== CHUNKING RESULTS ===\n"
|
| 417 |
-
preview += f"Total chunks created: {len(chunks)}\n"
|
| 418 |
-
preview += f"Full text length processed: {len(full_text)} characters\n\n"
|
| 419 |
-
preview += "--- CHUNK PREVIEW ---\n\n"
|
| 420 |
-
|
| 421 |
-
for i, chunk in enumerate(chunks[:3]):
|
| 422 |
-
preview += f"Chunk {i+1} (Length: {len(chunk)} chars):\n"
|
| 423 |
-
preview += f"{chunk[:200]}...\n\n"
|
| 424 |
-
preview += "-" * 50 + "\n\n"
|
| 425 |
-
|
| 426 |
-
if len(chunks) > 3:
|
| 427 |
-
preview += f"... and {len(chunks)-3} more chunks\n"
|
| 428 |
-
preview += f"Shortest chunk: {min(len(c) for c in chunks)} chars\n"
|
| 429 |
-
preview += f"Longest chunk: {max(len(c) for c in chunks)} chars\n"
|
| 430 |
-
|
| 431 |
-
return preview, json.dumps(metadata, indent=2)
|
| 432 |
-
|
| 433 |
-
def process_vector_storage(text, chunk_size, overlap, doc_name):
|
| 434 |
-
"""Process vector storage in local ChromaDB"""
|
| 435 |
-
if not rag_pipeline.openai_client:
|
| 436 |
-
return "Please configure OpenAI API key first in the Configuration tab", "{}"
|
| 437 |
-
|
| 438 |
-
if not rag_pipeline.chroma_client:
|
| 439 |
-
return "ChromaDB local database not available. Please restart the application.", "{}"
|
| 440 |
-
|
| 441 |
-
# Always use the stored full text
|
| 442 |
-
if not rag_pipeline.full_extracted_text:
|
| 443 |
-
return "No valid text to store. Please upload a PDF first.", "{}"
|
| 444 |
-
|
| 445 |
-
full_text = rag_pipeline.full_extracted_text
|
| 446 |
-
print(f"DEBUG: Using full text for storage, length: {len(full_text)}")
|
| 447 |
-
|
| 448 |
-
# Re-chunk the text using full text
|
| 449 |
-
chunks, _ = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
|
| 450 |
-
|
| 451 |
-
if not chunks:
|
| 452 |
-
return "No chunks to store", "{}"
|
| 453 |
-
|
| 454 |
-
# Store in ChromaDB
|
| 455 |
-
storage_metadata = rag_pipeline.store_in_chromadb(chunks, doc_name or "financial_document")
|
| 456 |
-
|
| 457 |
-
if "error" in storage_metadata:
|
| 458 |
-
return f"Storage failed: {storage_metadata['error']}", json.dumps(storage_metadata, indent=2)
|
| 459 |
-
|
| 460 |
-
return f"Successfully stored {len(chunks)} chunks in ChromaDB Local using OpenAI embeddings\nFull text length: {len(full_text)} characters", json.dumps(storage_metadata, indent=2)
|
| 461 |
-
|
| 462 |
-
def process_semantic_search(query, top_k):
|
| 463 |
-
"""Process semantic search"""
|
| 464 |
-
if not query.strip():
|
| 465 |
-
return "Please enter a search query", "{}", ""
|
| 466 |
-
|
| 467 |
-
search_results, search_metadata = rag_pipeline.semantic_search(query, int(top_k))
|
| 468 |
-
|
| 469 |
-
if not search_results:
|
| 470 |
-
return "No results found", json.dumps(search_metadata, indent=2), ""
|
| 471 |
-
|
| 472 |
-
# Format results for display
|
| 473 |
-
results_display = "=== TOP MATCHING CHUNKS ===\n\n"
|
| 474 |
-
for i, result in enumerate(search_results, 1):
|
| 475 |
-
results_display += f"RESULT {i}:\n"
|
| 476 |
-
results_display += f"Chunk ID: {result['chunk_id']}\n"
|
| 477 |
-
results_display += f"Similarity Score: {result['similarity_score']:.4f}\n"
|
| 478 |
-
results_display += f"Content Preview: {result['content']}\n"
|
| 479 |
-
results_display += "-" * 50 + "\n\n"
|
| 480 |
-
|
| 481 |
-
# Create DataFrame for structured display
|
| 482 |
-
df_data = []
|
| 483 |
-
for result in search_results:
|
| 484 |
-
df_data.append({
|
| 485 |
-
"Chunk ID": result['chunk_id'],
|
| 486 |
-
"Similarity Score": f"{result['similarity_score']:.4f}",
|
| 487 |
-
"Content Length": len(result['full_content']),
|
| 488 |
-
"Preview": result['content'][:100] + "..."
|
| 489 |
-
})
|
| 490 |
-
|
| 491 |
-
df = pd.DataFrame(df_data)
|
| 492 |
-
|
| 493 |
-
return results_display, json.dumps(search_metadata, indent=2), df
|
| 494 |
-
|
| 495 |
-
def generate_final_response(query, top_k):
|
| 496 |
-
"""Generate final LLM response"""
|
| 497 |
-
if not rag_pipeline.openai_client:
|
| 498 |
-
return "Please configure OpenAI API key first in the Configuration tab", "{}"
|
| 499 |
-
|
| 500 |
-
if not query.strip():
|
| 501 |
-
return "Please enter a query first", "{}"
|
| 502 |
-
|
| 503 |
-
# Get search results
|
| 504 |
-
search_results, _ = rag_pipeline.semantic_search(query, int(top_k))
|
| 505 |
-
|
| 506 |
-
if not search_results:
|
| 507 |
-
return "No search results available for LLM generation", "{}"
|
| 508 |
-
|
| 509 |
-
# Generate LLM response
|
| 510 |
-
response, metadata = rag_pipeline.generate_llm_response(query, search_results)
|
| 511 |
-
|
| 512 |
-
return response, json.dumps(metadata, indent=2)
|
| 513 |
-
|
| 514 |
-
def create_gradio_interface():
|
| 515 |
-
"""Create the Gradio interface"""
|
| 516 |
-
|
| 517 |
-
with gr.Blocks(title="RAG Pipeline Demo - Financial Document Analysis", theme=gr.themes.Soft()) as demo:
|
| 518 |
-
gr.Markdown("""
|
| 519 |
-
# π¦ RAG Pipeline Demo - Financial Document Analysis
|
| 520 |
-
|
| 521 |
-
This demo shows a complete Retrieval-Augmented Generation (RAG) pipeline with full transparency.
|
| 522 |
-
Each step is clearly displayed so you can understand exactly what's happening in the backend.
|
| 523 |
-
|
| 524 |
-
**π§ Start by configuring your API keys in the Configuration tab below.**
|
| 525 |
-
""")
|
| 526 |
-
|
| 527 |
-
# Configuration Tab - Simplified
|
| 528 |
-
with gr.Tab("βοΈ Configuration"):
|
| 529 |
-
gr.Markdown("### API Configuration")
|
| 530 |
-
gr.Markdown("Configure your OpenAI API key. ChromaDB will run locally and store data in `./chroma_db` folder.")
|
| 531 |
-
|
| 532 |
-
with gr.Row():
|
| 533 |
-
with gr.Column():
|
| 534 |
-
gr.Markdown("#### OpenAI API Key")
|
| 535 |
-
gr.Markdown("Required for both embeddings generation and LLM response generation")
|
| 536 |
-
openai_key_input = gr.Textbox(
|
| 537 |
-
label="OpenAI API Key",
|
| 538 |
-
type="password",
|
| 539 |
-
placeholder="sk-...",
|
| 540 |
-
info="Get your API key from: https://platform.openai.com/api-keys"
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
with gr.Column():
|
| 544 |
-
gr.Markdown("#### ChromaDB Status")
|
| 545 |
-
gr.Markdown("β
**Local ChromaDB**: Data will be stored locally in `./chroma_db`")
|
| 546 |
-
gr.Markdown("π **Storage Location**: Current directory/chroma_db")
|
| 547 |
-
gr.Markdown("π **Persistence**: Data persists between sessions")
|
| 548 |
-
|
| 549 |
-
config_btn = gr.Button("Save OpenAI Configuration", variant="primary", size="lg")
|
| 550 |
-
config_status = gr.Textbox(label="Configuration Status", lines=3)
|
| 551 |
-
|
| 552 |
-
# Step 1: Document Upload
|
| 553 |
-
with gr.Tab("1οΈβ£ Document Upload"):
|
| 554 |
-
gr.Markdown("### Step 1: Upload Your Financial PDF Document")
|
| 555 |
-
|
| 556 |
-
with gr.Row():
|
| 557 |
-
with gr.Column():
|
| 558 |
-
pdf_input = gr.File(label="Upload PDF Document", file_types=[".pdf"])
|
| 559 |
-
upload_btn = gr.Button("Extract Text from PDF", variant="primary")
|
| 560 |
-
|
| 561 |
-
with gr.Column():
|
| 562 |
-
extraction_output = gr.Textbox(label="Extracted Text Preview", lines=15, max_lines=20)
|
| 563 |
-
extraction_metadata = gr.JSON(label="Extraction Metadata")
|
| 564 |
-
|
| 565 |
-
# Step 2: Text Chunking
|
| 566 |
-
with gr.Tab("2οΈβ£ Text Chunking"):
|
| 567 |
-
gr.Markdown("### Step 2: Split Text into Manageable Chunks")
|
| 568 |
-
|
| 569 |
-
with gr.Row():
|
| 570 |
-
with gr.Column():
|
| 571 |
-
chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size (characters)")
|
| 572 |
-
overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap (characters)")
|
| 573 |
-
chunk_btn = gr.Button("Create Chunks", variant="primary")
|
| 574 |
-
|
| 575 |
-
with gr.Column():
|
| 576 |
-
chunks_output = gr.Textbox(label="Chunks Preview", lines=15, max_lines=20)
|
| 577 |
-
chunking_metadata = gr.JSON(label="Chunking Metadata")
|
| 578 |
-
|
| 579 |
-
# Step 3: Vector Storage
|
| 580 |
-
with gr.Tab("3οΈβ£ Vector Storage"):
|
| 581 |
-
gr.Markdown("### Step 3: Store Chunks in ChromaDB Vector Database")
|
| 582 |
-
|
| 583 |
-
with gr.Row():
|
| 584 |
-
with gr.Column():
|
| 585 |
-
doc_name = gr.Textbox(label="Document Name", value="financial_report", placeholder="Enter document name")
|
| 586 |
-
storage_btn = gr.Button("Store in ChromaDB", variant="primary")
|
| 587 |
-
|
| 588 |
-
with gr.Column():
|
| 589 |
-
storage_output = gr.Textbox(label="Storage Status", lines=5)
|
| 590 |
-
storage_metadata = gr.JSON(label="Storage Metadata")
|
| 591 |
-
|
| 592 |
-
# Step 4: Semantic Search
|
| 593 |
-
with gr.Tab("4οΈβ£ Semantic Search"):
|
| 594 |
-
gr.Markdown("### Step 4: Search for Relevant Information")
|
| 595 |
-
|
| 596 |
-
with gr.Row():
|
| 597 |
-
with gr.Column():
|
| 598 |
-
search_query = gr.Textbox(label="Enter your question", placeholder="e.g., What was the revenue growth in Q4?")
|
| 599 |
-
top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Number of results to retrieve")
|
| 600 |
-
search_btn = gr.Button("Search Vector Database", variant="primary")
|
| 601 |
-
|
| 602 |
-
with gr.Column():
|
| 603 |
-
search_results_text = gr.Textbox(label="Search Results", lines=15, max_lines=20)
|
| 604 |
-
search_metadata = gr.JSON(label="Search Metadata")
|
| 605 |
-
|
| 606 |
-
# Results table
|
| 607 |
-
results_table = gr.DataFrame(label="Top Matching Chunks - Structured View")
|
| 608 |
-
|
| 609 |
-
# Step 5: LLM Response Generation
|
| 610 |
-
with gr.Tab("5οΈβ£ LLM Response"):
|
| 611 |
-
gr.Markdown("### Step 5: Generate Final Answer using OpenAI")
|
| 612 |
-
gr.Markdown("*Note: OpenAI API key must be configured in the Configuration tab*")
|
| 613 |
-
|
| 614 |
-
with gr.Row():
|
| 615 |
-
with gr.Column():
|
| 616 |
-
generate_btn = gr.Button("Generate Final Response", variant="primary")
|
| 617 |
-
gr.Markdown("**Current Query:** Will use the query from Step 4")
|
| 618 |
-
|
| 619 |
-
with gr.Column():
|
| 620 |
-
final_response = gr.Textbox(label="AI Generated Response", lines=15, max_lines=20)
|
| 621 |
-
response_metadata = gr.JSON(label="Response Metadata")
|
| 622 |
-
|
| 623 |
-
# Complete Pipeline Tab
|
| 624 |
-
with gr.Tab("π Complete Pipeline"):
|
| 625 |
-
gr.Markdown("### Run the Complete RAG Pipeline")
|
| 626 |
-
gr.Markdown("*Note: Make sure to configure API keys in the Configuration tab first*")
|
| 627 |
-
|
| 628 |
-
with gr.Row():
|
| 629 |
-
with gr.Column():
|
| 630 |
-
complete_pdf = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 631 |
-
complete_query = gr.Textbox(label="Your Question", placeholder="Ask about the financial document")
|
| 632 |
-
|
| 633 |
-
with gr.Column():
|
| 634 |
-
complete_chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size")
|
| 635 |
-
complete_overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap")
|
| 636 |
-
complete_top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Top K Results")
|
| 637 |
-
|
| 638 |
-
complete_btn = gr.Button("Run Complete Pipeline", variant="primary", size="lg")
|
| 639 |
-
|
| 640 |
-
with gr.Row():
|
| 641 |
-
pipeline_status = gr.Textbox(label="Pipeline Status", lines=10)
|
| 642 |
-
pipeline_response = gr.Textbox(label="Final Answer", lines=10)
|
| 643 |
-
|
| 644 |
-
# Event handlers
|
| 645 |
-
config_btn.click(
|
| 646 |
-
configure_openai_api,
|
| 647 |
-
inputs=[openai_key_input],
|
| 648 |
-
outputs=[config_status]
|
| 649 |
-
)
|
| 650 |
-
|
| 651 |
-
upload_btn.click(
|
| 652 |
-
process_pdf_upload,
|
| 653 |
-
inputs=[pdf_input],
|
| 654 |
-
outputs=[extraction_output, extraction_metadata]
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
chunk_btn.click(
|
| 658 |
-
process_chunking,
|
| 659 |
-
inputs=[extraction_output, chunk_size, overlap],
|
| 660 |
-
outputs=[chunks_output, chunking_metadata]
|
| 661 |
-
)
|
| 662 |
-
|
| 663 |
-
storage_btn.click(
|
| 664 |
-
process_vector_storage,
|
| 665 |
-
inputs=[extraction_output, chunk_size, overlap, doc_name],
|
| 666 |
-
outputs=[storage_output, storage_metadata]
|
| 667 |
-
)
|
| 668 |
-
|
| 669 |
-
search_btn.click(
|
| 670 |
-
process_semantic_search,
|
| 671 |
-
inputs=[search_query, top_k],
|
| 672 |
-
outputs=[search_results_text, search_metadata, results_table]
|
| 673 |
-
)
|
| 674 |
-
|
| 675 |
-
generate_btn.click(
|
| 676 |
-
generate_final_response,
|
| 677 |
-
inputs=[search_query, top_k],
|
| 678 |
-
outputs=[final_response, response_metadata]
|
| 679 |
-
)
|
| 680 |
-
|
| 681 |
-
# Complete pipeline function
|
| 682 |
-
def run_complete_pipeline(pdf_file, query, chunk_size, overlap, top_k):
|
| 683 |
-
if not pdf_file or not query:
|
| 684 |
-
return "Please provide PDF file and query", ""
|
| 685 |
-
|
| 686 |
-
if not rag_pipeline.openai_client:
|
| 687 |
-
return "Please configure OpenAI API key in the Configuration tab first", ""
|
| 688 |
-
|
| 689 |
-
if not rag_pipeline.chroma_client:
|
| 690 |
-
return "ChromaDB local database not available. Please restart the application.", ""
|
| 691 |
-
|
| 692 |
-
status = "Starting RAG Pipeline...\n\n"
|
| 693 |
-
status += "Using: ChromaDB Local + OpenAI API\n"
|
| 694 |
-
status += "Storage: ./chroma_db directory\n\n"
|
| 695 |
-
|
| 696 |
-
try:
|
| 697 |
-
# Step 1: Extract text
|
| 698 |
-
status += "Step 1: Extracting text from PDF...\n"
|
| 699 |
-
text, _ = rag_pipeline.extract_text_from_pdf(pdf_file)
|
| 700 |
-
if text.startswith("Error"):
|
| 701 |
-
return status + f"Failed: {text}", ""
|
| 702 |
-
status += "β
Text extraction completed\n\n"
|
| 703 |
-
|
| 704 |
-
# Step 2: Chunk text
|
| 705 |
-
status += "Step 2: Chunking text...\n"
|
| 706 |
-
chunks, _ = rag_pipeline.chunk_text(text, chunk_size, overlap)
|
| 707 |
-
status += f"β
Created {len(chunks)} chunks\n\n"
|
| 708 |
-
|
| 709 |
-
# Step 3: Store in vector DB
|
| 710 |
-
status += f"Step 3: Generating OpenAI embeddings and storing in ChromaDB Local...\n"
|
| 711 |
-
storage_result = rag_pipeline.store_in_chromadb(chunks, "complete_pipeline_doc")
|
| 712 |
-
if "error" in storage_result:
|
| 713 |
-
return status + f"Failed: {storage_result['error']}", ""
|
| 714 |
-
status += f"β
Vectors stored in ChromaDB Local using OpenAI embeddings\n\n"
|
| 715 |
-
|
| 716 |
-
# Step 4: Search
|
| 717 |
-
status += "Step 4: Performing semantic search with OpenAI embeddings...\n"
|
| 718 |
-
search_results, _ = rag_pipeline.semantic_search(query, top_k)
|
| 719 |
-
if not search_results:
|
| 720 |
-
return status + "β No search results found", ""
|
| 721 |
-
status += f"β
Found {len(search_results)} relevant chunks\n\n"
|
| 722 |
-
|
| 723 |
-
# Step 5: Generate response
|
| 724 |
-
status += "Step 5: Generating LLM response...\n"
|
| 725 |
-
response, _ = rag_pipeline.generate_llm_response(query, search_results)
|
| 726 |
-
if response.startswith("LLM Generation failed"):
|
| 727 |
-
return status + f"Failed: {response}", ""
|
| 728 |
-
status += "β
Final response generated successfully!"
|
| 729 |
-
|
| 730 |
-
return status, response
|
| 731 |
-
|
| 732 |
-
except Exception as e:
|
| 733 |
-
return status + f"β Pipeline failed: {str(e)}", ""
|
| 734 |
-
|
| 735 |
-
complete_btn.click(
|
| 736 |
-
run_complete_pipeline,
|
| 737 |
-
inputs=[complete_pdf, complete_query, complete_chunk_size, complete_overlap, complete_top_k],
|
| 738 |
-
outputs=[pipeline_status, pipeline_response]
|
| 739 |
-
)
|
| 740 |
-
|
| 741 |
-
return demo
|
| 742 |
-
|
| 743 |
-
# Launch the application
|
| 744 |
-
if __name__ == "__main__":
|
| 745 |
-
# Install required packages
|
| 746 |
-
print("Starting RAG Pipeline Demo...")
|
| 747 |
-
print("Make sure you have installed the required packages:")
|
| 748 |
-
print("pip install gradio PyPDF2 chromadb openai pandas numpy")
|
| 749 |
-
print("\nConfiguration:")
|
| 750 |
-
print("β
ChromaDB: Local storage (./chroma_db directory)")
|
| 751 |
-
print("π OpenAI: API key required for embeddings + LLM")
|
| 752 |
-
print("π Data persistence: Enabled across sessions")
|
| 753 |
-
|
| 754 |
-
# Create and launch the Gradio interface
|
| 755 |
-
demo = create_gradio_interface()
|
| 756 |
-
demo.launch(
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import PyPDF2
|
| 3 |
+
import chromadb
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List, Dict, Tuple
|
| 7 |
+
import json
|
| 8 |
+
import io
|
| 9 |
+
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
class RAGPipeline:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
# Initialize local ChromaDB client using new configuration
|
| 16 |
+
try:
|
| 17 |
+
self.chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"ChromaDB initialization error: {e}")
|
| 20 |
+
self.chroma_client = None
|
| 21 |
+
|
| 22 |
+
# OpenAI client (will be set through UI)
|
| 23 |
+
self.openai_client = None
|
| 24 |
+
self.openai_api_key = None
|
| 25 |
+
|
| 26 |
+
# Collection for storing document chunks
|
| 27 |
+
self.collection = None
|
| 28 |
+
|
| 29 |
+
# Store document metadata and full text
|
| 30 |
+
self.document_metadata = {}
|
| 31 |
+
self.full_extracted_text = "" # Store full text here
|
| 32 |
+
|
| 33 |
+
def set_openai_key(self, openai_key: str):
|
| 34 |
+
"""Set OpenAI API key and create client"""
|
| 35 |
+
self.openai_api_key = openai_key
|
| 36 |
+
|
| 37 |
+
if openai_key:
|
| 38 |
+
self.openai_client = OpenAI(api_key=openai_key)
|
| 39 |
+
|
| 40 |
+
def get_openai_embedding(self, text: str) -> List[float]:
|
| 41 |
+
"""Generate embeddings using OpenAI's text-embedding-ada-002 model"""
|
| 42 |
+
if not self.openai_client:
|
| 43 |
+
raise ValueError("OpenAI client not initialized")
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
response = self.openai_client.embeddings.create(
|
| 47 |
+
model="text-embedding-ada-002",
|
| 48 |
+
input=text
|
| 49 |
+
)
|
| 50 |
+
return response.data[0].embedding
|
| 51 |
+
except Exception as e:
|
| 52 |
+
raise Exception(f"OpenAI embedding generation failed: {str(e)}")
|
| 53 |
+
|
| 54 |
+
def extract_text_from_pdf(self, pdf_file) -> Tuple[str, Dict]:
|
| 55 |
+
"""Extract text from uploaded PDF file"""
|
| 56 |
+
try:
|
| 57 |
+
# Handle different file types from Gradio
|
| 58 |
+
if hasattr(pdf_file, 'name'):
|
| 59 |
+
# If it's a file path, read the file
|
| 60 |
+
with open(pdf_file.name, 'rb') as file:
|
| 61 |
+
pdf_content = file.read()
|
| 62 |
+
elif isinstance(pdf_file, bytes):
|
| 63 |
+
# If it's already bytes
|
| 64 |
+
pdf_content = pdf_file
|
| 65 |
+
else:
|
| 66 |
+
# If it's a file-like object, read it
|
| 67 |
+
pdf_content = pdf_file.read() if hasattr(pdf_file, 'read') else pdf_file
|
| 68 |
+
|
| 69 |
+
# Read PDF file
|
| 70 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_content))
|
| 71 |
+
|
| 72 |
+
text = ""
|
| 73 |
+
page_count = len(pdf_reader.pages)
|
| 74 |
+
|
| 75 |
+
# Extract text from all pages
|
| 76 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
| 77 |
+
page_text = page.extract_text()
|
| 78 |
+
if page_text.strip(): # Only add non-empty pages
|
| 79 |
+
text += f"\n--- Page {page_num + 1} ---\n"
|
| 80 |
+
text += page_text + "\n"
|
| 81 |
+
|
| 82 |
+
# Clean up the text
|
| 83 |
+
text = text.strip()
|
| 84 |
+
|
| 85 |
+
# Store the full text in the pipeline object
|
| 86 |
+
self.full_extracted_text = text
|
| 87 |
+
print(f"DEBUG: Stored full text length: {len(self.full_extracted_text)}")
|
| 88 |
+
|
| 89 |
+
# Create extraction metadata
|
| 90 |
+
metadata = {
|
| 91 |
+
"total_pages": page_count,
|
| 92 |
+
"total_characters": len(text),
|
| 93 |
+
"extraction_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 94 |
+
"file_size_bytes": len(pdf_content),
|
| 95 |
+
"pages_with_text": sum(1 for page in pdf_reader.pages if page.extract_text().strip()),
|
| 96 |
+
"average_chars_per_page": len(text) // page_count if page_count > 0 else 0
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
return text, metadata
|
| 100 |
+
|
| 101 |
+
except Exception as e:
|
| 102 |
+
return f"Error extracting PDF: {str(e)}", {}
|
| 103 |
+
|
| 104 |
+
def chunk_text(self, text: str, chunk_size: int = 1000, overlap: int = 200) -> Tuple[List[str], Dict]:
|
| 105 |
+
"""Split text into overlapping chunks"""
|
| 106 |
+
if not text or len(text.strip()) == 0:
|
| 107 |
+
return [], {"error": "No text provided for chunking"}
|
| 108 |
+
|
| 109 |
+
# Clean the text first
|
| 110 |
+
text = text.strip()
|
| 111 |
+
|
| 112 |
+
chunks = []
|
| 113 |
+
start = 0
|
| 114 |
+
|
| 115 |
+
print(f"DEBUG: Starting chunking with text length: {len(text)}")
|
| 116 |
+
print(f"DEBUG: Chunk size: {chunk_size}, Overlap: {overlap}")
|
| 117 |
+
|
| 118 |
+
while start < len(text):
|
| 119 |
+
end = start + chunk_size
|
| 120 |
+
|
| 121 |
+
# If we're not at the end, try to break at a sentence or word boundary
|
| 122 |
+
if end < len(text):
|
| 123 |
+
# Look for sentence boundary
|
| 124 |
+
last_period = text.rfind('.', start, end)
|
| 125 |
+
last_newline = text.rfind('\n', start, end)
|
| 126 |
+
last_space = text.rfind(' ', start, end)
|
| 127 |
+
|
| 128 |
+
# Choose the best breaking point
|
| 129 |
+
break_point = max(last_period, last_newline, last_space)
|
| 130 |
+
if break_point > start:
|
| 131 |
+
end = break_point + 1
|
| 132 |
+
|
| 133 |
+
chunk = text[start:end].strip()
|
| 134 |
+
if chunk and len(chunk) > 50: # Only add meaningful chunks
|
| 135 |
+
chunks.append(chunk)
|
| 136 |
+
print(f"DEBUG: Added chunk {len(chunks)}: length={len(chunk)}")
|
| 137 |
+
|
| 138 |
+
# Move start position
|
| 139 |
+
if end >= len(text):
|
| 140 |
+
break
|
| 141 |
+
start = end - overlap
|
| 142 |
+
|
| 143 |
+
# Prevent infinite loop
|
| 144 |
+
if start >= end:
|
| 145 |
+
start = end
|
| 146 |
+
|
| 147 |
+
print(f"DEBUG: Final chunks count: {len(chunks)}")
|
| 148 |
+
|
| 149 |
+
# Create chunking metadata
|
| 150 |
+
chunk_lengths = [len(chunk) for chunk in chunks]
|
| 151 |
+
metadata = {
|
| 152 |
+
"total_chunks": len(chunks),
|
| 153 |
+
"chunk_size": chunk_size,
|
| 154 |
+
"overlap": overlap,
|
| 155 |
+
"avg_chunk_length": np.mean(chunk_lengths) if chunks else 0,
|
| 156 |
+
"min_chunk_length": min(chunk_lengths) if chunks else 0,
|
| 157 |
+
"max_chunk_length": max(chunk_lengths) if chunks else 0,
|
| 158 |
+
"total_text_length": len(text),
|
| 159 |
+
"chunking_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
return chunks, metadata
|
| 163 |
+
|
| 164 |
+
def store_in_chromadb(self, chunks: List[str], document_name: str) -> Dict:
|
| 165 |
+
"""Store chunks in ChromaDB with OpenAI embeddings"""
|
| 166 |
+
if not self.openai_client:
|
| 167 |
+
return {"error": "OpenAI client not initialized for embedding generation"}
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
# Create or get collection
|
| 171 |
+
collection_name = f"financial_docs_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 172 |
+
|
| 173 |
+
try:
|
| 174 |
+
self.chroma_client.delete_collection(collection_name)
|
| 175 |
+
except:
|
| 176 |
+
pass
|
| 177 |
+
|
| 178 |
+
self.collection = self.chroma_client.create_collection(
|
| 179 |
+
name=collection_name,
|
| 180 |
+
metadata={"hnsw:space": "cosine"}
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Generate embeddings for chunks using OpenAI
|
| 184 |
+
embeddings = []
|
| 185 |
+
embedding_metadata = {
|
| 186 |
+
"model_used": "text-embedding-ada-002",
|
| 187 |
+
"total_chunks_processed": len(chunks),
|
| 188 |
+
"embedding_start_time": datetime.now().isoformat()
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
for i, chunk in enumerate(chunks):
|
| 192 |
+
try:
|
| 193 |
+
embedding = self.get_openai_embedding(chunk)
|
| 194 |
+
embeddings.append(embedding)
|
| 195 |
+
except Exception as e:
|
| 196 |
+
return {"error": f"Failed to generate embedding for chunk {i}: {str(e)}"}
|
| 197 |
+
|
| 198 |
+
embedding_metadata["embedding_end_time"] = datetime.now().isoformat()
|
| 199 |
+
embedding_metadata["embedding_dimension"] = len(embeddings[0]) if embeddings else 0
|
| 200 |
+
|
| 201 |
+
# Create unique IDs for each chunk
|
| 202 |
+
ids = [f"chunk_{i}" for i in range(len(chunks))]
|
| 203 |
+
|
| 204 |
+
# Create metadata for each chunk
|
| 205 |
+
metadatas = [
|
| 206 |
+
{
|
| 207 |
+
"chunk_id": i,
|
| 208 |
+
"document_name": document_name,
|
| 209 |
+
"chunk_length": len(chunk),
|
| 210 |
+
"created_at": datetime.now().isoformat(),
|
| 211 |
+
"embedding_model": "text-embedding-ada-002"
|
| 212 |
+
}
|
| 213 |
+
for i, chunk in enumerate(chunks)
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
# Store in ChromaDB
|
| 217 |
+
self.collection.add(
|
| 218 |
+
embeddings=embeddings,
|
| 219 |
+
documents=chunks,
|
| 220 |
+
metadatas=metadatas,
|
| 221 |
+
ids=ids
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# Create storage metadata
|
| 225 |
+
storage_metadata = {
|
| 226 |
+
"collection_name": collection_name,
|
| 227 |
+
"total_vectors_stored": len(chunks),
|
| 228 |
+
"embedding_dimension": len(embeddings[0]) if embeddings else 0,
|
| 229 |
+
"embedding_model": "text-embedding-ada-002",
|
| 230 |
+
"storage_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 231 |
+
"database_status": "Successfully stored",
|
| 232 |
+
"database_type": "ChromaDB Local",
|
| 233 |
+
"database_path": "./chroma_db",
|
| 234 |
+
"embedding_metadata": embedding_metadata
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
return storage_metadata
|
| 238 |
+
|
| 239 |
+
except Exception as e:
|
| 240 |
+
return {"error": f"Storage failed: {str(e)}"}
|
| 241 |
+
|
| 242 |
+
def semantic_search(self, query: str, top_k: int = 5) -> Tuple[List[Dict], Dict]:
|
| 243 |
+
"""Perform semantic search using OpenAI embeddings and return top-k results"""
|
| 244 |
+
if not self.collection:
|
| 245 |
+
return [], {"error": "No collection available. Please upload and process a document first."}
|
| 246 |
+
|
| 247 |
+
if not self.openai_client:
|
| 248 |
+
return [], {"error": "OpenAI client not initialized for query embedding generation"}
|
| 249 |
+
|
| 250 |
+
try:
|
| 251 |
+
# Generate query embedding using OpenAI
|
| 252 |
+
query_embedding = self.get_openai_embedding(query)
|
| 253 |
+
|
| 254 |
+
# Search in ChromaDB
|
| 255 |
+
results = self.collection.query(
|
| 256 |
+
query_embeddings=[query_embedding],
|
| 257 |
+
n_results=top_k,
|
| 258 |
+
include=['documents', 'metadatas', 'distances']
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# Format results
|
| 262 |
+
search_results = []
|
| 263 |
+
for i in range(len(results['documents'][0])):
|
| 264 |
+
result = {
|
| 265 |
+
"chunk_id": results['metadatas'][0][i]['chunk_id'],
|
| 266 |
+
"similarity_score": 1 - results['distances'][0][i], # Convert distance to similarity
|
| 267 |
+
"content": results['documents'][0][i][:500] + "..." if len(results['documents'][0][i]) > 500 else results['documents'][0][i],
|
| 268 |
+
"full_content": results['documents'][0][i],
|
| 269 |
+
"metadata": results['metadatas'][0][i]
|
| 270 |
+
}
|
| 271 |
+
search_results.append(result)
|
| 272 |
+
|
| 273 |
+
# Create search metadata
|
| 274 |
+
search_metadata = {
|
| 275 |
+
"query": query,
|
| 276 |
+
"results_found": len(search_results),
|
| 277 |
+
"search_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 278 |
+
"top_similarity_score": max([r["similarity_score"] for r in search_results]) if search_results else 0,
|
| 279 |
+
"query_embedding_model": "text-embedding-ada-002",
|
| 280 |
+
"vector_database": "ChromaDB Local"
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
return search_results, search_metadata
|
| 284 |
+
|
| 285 |
+
except Exception as e:
|
| 286 |
+
return [], {"error": f"Search failed: {str(e)}"}
|
| 287 |
+
|
| 288 |
+
def generate_llm_response(self, query: str, search_results: List[Dict]) -> Tuple[str, Dict]:
|
| 289 |
+
"""Generate final response using OpenAI LLM"""
|
| 290 |
+
if not self.openai_client:
|
| 291 |
+
return "OpenAI client not initialized for LLM response generation.", {}
|
| 292 |
+
|
| 293 |
+
try:
|
| 294 |
+
# Prepare context from search results
|
| 295 |
+
context = "\n\n".join([
|
| 296 |
+
f"Chunk {result['chunk_id']} (Similarity: {result['similarity_score']:.3f}):\n{result['full_content']}"
|
| 297 |
+
for result in search_results
|
| 298 |
+
])
|
| 299 |
+
|
| 300 |
+
# Create prompt
|
| 301 |
+
prompt = f"""Based on the following financial document excerpts, please provide a comprehensive and accurate answer to the user's question.
|
| 302 |
+
|
| 303 |
+
Context from financial document:
|
| 304 |
+
{context}
|
| 305 |
+
|
| 306 |
+
User Question: {query}
|
| 307 |
+
|
| 308 |
+
Instructions:
|
| 309 |
+
1. Provide a detailed, well-structured answer based solely on the provided context
|
| 310 |
+
2. If the context doesn't contain enough information to fully answer the question, clearly state this
|
| 311 |
+
3. Include specific numbers, dates, and financial figures when available
|
| 312 |
+
4. Structure your response clearly with proper formatting
|
| 313 |
+
5. Cite which chunk(s) your information comes from when possible
|
| 314 |
+
|
| 315 |
+
Answer:"""
|
| 316 |
+
|
| 317 |
+
# Generate response using OpenAI
|
| 318 |
+
response = self.openai_client.chat.completions.create(
|
| 319 |
+
model="gpt-3.5-turbo",
|
| 320 |
+
messages=[
|
| 321 |
+
{"role": "system", "content": "You are a financial analyst AI assistant. Provide accurate, well-structured responses based on the given financial document context."},
|
| 322 |
+
{"role": "user", "content": prompt}
|
| 323 |
+
],
|
| 324 |
+
max_tokens=1000,
|
| 325 |
+
temperature=0.1
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
llm_response = response.choices[0].message.content
|
| 329 |
+
|
| 330 |
+
# Create response metadata
|
| 331 |
+
response_metadata = {
|
| 332 |
+
"model_used": "gpt-3.5-turbo",
|
| 333 |
+
"response_length": len(llm_response),
|
| 334 |
+
"tokens_used": response.usage.total_tokens,
|
| 335 |
+
"prompt_tokens": response.usage.prompt_tokens,
|
| 336 |
+
"completion_tokens": response.usage.completion_tokens,
|
| 337 |
+
"generation_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 338 |
+
"context_chunks_used": len(search_results),
|
| 339 |
+
"temperature": 0.1,
|
| 340 |
+
"max_tokens": 1000
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
return llm_response, response_metadata
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
return f"LLM Generation failed: {str(e)}", {"error": str(e)}
|
| 347 |
+
|
| 348 |
+
# Initialize RAG pipeline
|
| 349 |
+
rag_pipeline = RAGPipeline()
|
| 350 |
+
|
| 351 |
+
def configure_openai_api(openai_key):
|
| 352 |
+
"""Configure OpenAI API key"""
|
| 353 |
+
try:
|
| 354 |
+
# Set OpenAI API key
|
| 355 |
+
rag_pipeline.set_openai_key(openai_key)
|
| 356 |
+
|
| 357 |
+
# Test OpenAI connection
|
| 358 |
+
if openai_key:
|
| 359 |
+
try:
|
| 360 |
+
# Test with a simple API call
|
| 361 |
+
test_response = rag_pipeline.openai_client.models.list()
|
| 362 |
+
openai_status = "β
OpenAI API key validated successfully"
|
| 363 |
+
except Exception as e:
|
| 364 |
+
openai_status = f"β OpenAI API key validation failed: {str(e)}"
|
| 365 |
+
else:
|
| 366 |
+
openai_status = "β OpenAI API key required"
|
| 367 |
+
|
| 368 |
+
# ChromaDB status (local setup)
|
| 369 |
+
if rag_pipeline.chroma_client:
|
| 370 |
+
chroma_status = "β
ChromaDB Local database ready (./chroma_db)"
|
| 371 |
+
else:
|
| 372 |
+
chroma_status = "β ChromaDB Local database initialization failed"
|
| 373 |
+
|
| 374 |
+
return f"{openai_status}\n{chroma_status}"
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
return f"β Configuration failed: {str(e)}"
|
| 378 |
+
|
| 379 |
+
# Remove the global variable since we're storing in the class
|
| 380 |
+
# extracted_text_store = ""
|
| 381 |
+
|
| 382 |
+
def process_pdf_upload(pdf_file):
|
| 383 |
+
"""Process uploaded PDF and extract text"""
|
| 384 |
+
if pdf_file is None:
|
| 385 |
+
return "No file uploaded", "{}"
|
| 386 |
+
|
| 387 |
+
# Extract text using the updated method
|
| 388 |
+
text, metadata = rag_pipeline.extract_text_from_pdf(pdf_file)
|
| 389 |
+
|
| 390 |
+
if text.startswith("Error"):
|
| 391 |
+
return text, json.dumps(metadata, indent=2)
|
| 392 |
+
|
| 393 |
+
# Show more text in preview (first 3000 characters instead of 2000)
|
| 394 |
+
preview_text = text[:3000] + f"...\n\n[SHOWING FIRST 3000 CHARACTERS OF {len(text)} TOTAL CHARACTERS]\n[FULL TEXT STORED FOR PROCESSING - Total Length: {len(rag_pipeline.full_extracted_text)} chars]" if len(text) > 3000 else text
|
| 395 |
+
|
| 396 |
+
return preview_text, json.dumps(metadata, indent=2)
|
| 397 |
+
|
| 398 |
+
def process_chunking(text, chunk_size, overlap):
|
| 399 |
+
"""Process text chunking"""
|
| 400 |
+
# Always use the full text stored in the pipeline object
|
| 401 |
+
if not rag_pipeline.full_extracted_text:
|
| 402 |
+
return "No text available for chunking. Please upload a PDF first.", "{}"
|
| 403 |
+
|
| 404 |
+
full_text = rag_pipeline.full_extracted_text
|
| 405 |
+
print(f"DEBUG: Using full text for chunking, length: {len(full_text)}")
|
| 406 |
+
|
| 407 |
+
if len(full_text.strip()) == 0:
|
| 408 |
+
return "No valid text available for chunking.", "{}"
|
| 409 |
+
|
| 410 |
+
chunks, metadata = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
|
| 411 |
+
|
| 412 |
+
if not chunks:
|
| 413 |
+
return "No chunks created. Please check your text and parameters.", json.dumps(metadata, indent=2)
|
| 414 |
+
|
| 415 |
+
# Display first few chunks as preview
|
| 416 |
+
preview = f"=== CHUNKING RESULTS ===\n"
|
| 417 |
+
preview += f"Total chunks created: {len(chunks)}\n"
|
| 418 |
+
preview += f"Full text length processed: {len(full_text)} characters\n\n"
|
| 419 |
+
preview += "--- CHUNK PREVIEW ---\n\n"
|
| 420 |
+
|
| 421 |
+
for i, chunk in enumerate(chunks[:3]):
|
| 422 |
+
preview += f"Chunk {i+1} (Length: {len(chunk)} chars):\n"
|
| 423 |
+
preview += f"{chunk[:200]}...\n\n"
|
| 424 |
+
preview += "-" * 50 + "\n\n"
|
| 425 |
+
|
| 426 |
+
if len(chunks) > 3:
|
| 427 |
+
preview += f"... and {len(chunks)-3} more chunks\n"
|
| 428 |
+
preview += f"Shortest chunk: {min(len(c) for c in chunks)} chars\n"
|
| 429 |
+
preview += f"Longest chunk: {max(len(c) for c in chunks)} chars\n"
|
| 430 |
+
|
| 431 |
+
return preview, json.dumps(metadata, indent=2)
|
| 432 |
+
|
| 433 |
+
def process_vector_storage(text, chunk_size, overlap, doc_name):
|
| 434 |
+
"""Process vector storage in local ChromaDB"""
|
| 435 |
+
if not rag_pipeline.openai_client:
|
| 436 |
+
return "Please configure OpenAI API key first in the Configuration tab", "{}"
|
| 437 |
+
|
| 438 |
+
if not rag_pipeline.chroma_client:
|
| 439 |
+
return "ChromaDB local database not available. Please restart the application.", "{}"
|
| 440 |
+
|
| 441 |
+
# Always use the stored full text
|
| 442 |
+
if not rag_pipeline.full_extracted_text:
|
| 443 |
+
return "No valid text to store. Please upload a PDF first.", "{}"
|
| 444 |
+
|
| 445 |
+
full_text = rag_pipeline.full_extracted_text
|
| 446 |
+
print(f"DEBUG: Using full text for storage, length: {len(full_text)}")
|
| 447 |
+
|
| 448 |
+
# Re-chunk the text using full text
|
| 449 |
+
chunks, _ = rag_pipeline.chunk_text(full_text, int(chunk_size), int(overlap))
|
| 450 |
+
|
| 451 |
+
if not chunks:
|
| 452 |
+
return "No chunks to store", "{}"
|
| 453 |
+
|
| 454 |
+
# Store in ChromaDB
|
| 455 |
+
storage_metadata = rag_pipeline.store_in_chromadb(chunks, doc_name or "financial_document")
|
| 456 |
+
|
| 457 |
+
if "error" in storage_metadata:
|
| 458 |
+
return f"Storage failed: {storage_metadata['error']}", json.dumps(storage_metadata, indent=2)
|
| 459 |
+
|
| 460 |
+
return f"Successfully stored {len(chunks)} chunks in ChromaDB Local using OpenAI embeddings\nFull text length: {len(full_text)} characters", json.dumps(storage_metadata, indent=2)
|
| 461 |
+
|
| 462 |
+
def process_semantic_search(query, top_k):
|
| 463 |
+
"""Process semantic search"""
|
| 464 |
+
if not query.strip():
|
| 465 |
+
return "Please enter a search query", "{}", ""
|
| 466 |
+
|
| 467 |
+
search_results, search_metadata = rag_pipeline.semantic_search(query, int(top_k))
|
| 468 |
+
|
| 469 |
+
if not search_results:
|
| 470 |
+
return "No results found", json.dumps(search_metadata, indent=2), ""
|
| 471 |
+
|
| 472 |
+
# Format results for display
|
| 473 |
+
results_display = "=== TOP MATCHING CHUNKS ===\n\n"
|
| 474 |
+
for i, result in enumerate(search_results, 1):
|
| 475 |
+
results_display += f"RESULT {i}:\n"
|
| 476 |
+
results_display += f"Chunk ID: {result['chunk_id']}\n"
|
| 477 |
+
results_display += f"Similarity Score: {result['similarity_score']:.4f}\n"
|
| 478 |
+
results_display += f"Content Preview: {result['content']}\n"
|
| 479 |
+
results_display += "-" * 50 + "\n\n"
|
| 480 |
+
|
| 481 |
+
# Create DataFrame for structured display
|
| 482 |
+
df_data = []
|
| 483 |
+
for result in search_results:
|
| 484 |
+
df_data.append({
|
| 485 |
+
"Chunk ID": result['chunk_id'],
|
| 486 |
+
"Similarity Score": f"{result['similarity_score']:.4f}",
|
| 487 |
+
"Content Length": len(result['full_content']),
|
| 488 |
+
"Preview": result['content'][:100] + "..."
|
| 489 |
+
})
|
| 490 |
+
|
| 491 |
+
df = pd.DataFrame(df_data)
|
| 492 |
+
|
| 493 |
+
return results_display, json.dumps(search_metadata, indent=2), df
|
| 494 |
+
|
| 495 |
+
def generate_final_response(query, top_k):
|
| 496 |
+
"""Generate final LLM response"""
|
| 497 |
+
if not rag_pipeline.openai_client:
|
| 498 |
+
return "Please configure OpenAI API key first in the Configuration tab", "{}"
|
| 499 |
+
|
| 500 |
+
if not query.strip():
|
| 501 |
+
return "Please enter a query first", "{}"
|
| 502 |
+
|
| 503 |
+
# Get search results
|
| 504 |
+
search_results, _ = rag_pipeline.semantic_search(query, int(top_k))
|
| 505 |
+
|
| 506 |
+
if not search_results:
|
| 507 |
+
return "No search results available for LLM generation", "{}"
|
| 508 |
+
|
| 509 |
+
# Generate LLM response
|
| 510 |
+
response, metadata = rag_pipeline.generate_llm_response(query, search_results)
|
| 511 |
+
|
| 512 |
+
return response, json.dumps(metadata, indent=2)
|
| 513 |
+
|
| 514 |
+
def create_gradio_interface():
|
| 515 |
+
"""Create the Gradio interface"""
|
| 516 |
+
|
| 517 |
+
with gr.Blocks(title="RAG Pipeline Demo - Financial Document Analysis", theme=gr.themes.Soft()) as demo:
|
| 518 |
+
gr.Markdown("""
|
| 519 |
+
# π¦ RAG Pipeline Demo - Financial Document Analysis
|
| 520 |
+
|
| 521 |
+
This demo shows a complete Retrieval-Augmented Generation (RAG) pipeline with full transparency.
|
| 522 |
+
Each step is clearly displayed so you can understand exactly what's happening in the backend.
|
| 523 |
+
|
| 524 |
+
**π§ Start by configuring your API keys in the Configuration tab below.**
|
| 525 |
+
""")
|
| 526 |
+
|
| 527 |
+
# Configuration Tab - Simplified
|
| 528 |
+
with gr.Tab("βοΈ Configuration"):
|
| 529 |
+
gr.Markdown("### API Configuration")
|
| 530 |
+
gr.Markdown("Configure your OpenAI API key. ChromaDB will run locally and store data in `./chroma_db` folder.")
|
| 531 |
+
|
| 532 |
+
with gr.Row():
|
| 533 |
+
with gr.Column():
|
| 534 |
+
gr.Markdown("#### OpenAI API Key")
|
| 535 |
+
gr.Markdown("Required for both embeddings generation and LLM response generation")
|
| 536 |
+
openai_key_input = gr.Textbox(
|
| 537 |
+
label="OpenAI API Key",
|
| 538 |
+
type="password",
|
| 539 |
+
placeholder="sk-...",
|
| 540 |
+
info="Get your API key from: https://platform.openai.com/api-keys"
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
with gr.Column():
|
| 544 |
+
gr.Markdown("#### ChromaDB Status")
|
| 545 |
+
gr.Markdown("β
**Local ChromaDB**: Data will be stored locally in `./chroma_db`")
|
| 546 |
+
gr.Markdown("π **Storage Location**: Current directory/chroma_db")
|
| 547 |
+
gr.Markdown("π **Persistence**: Data persists between sessions")
|
| 548 |
+
|
| 549 |
+
config_btn = gr.Button("Save OpenAI Configuration", variant="primary", size="lg")
|
| 550 |
+
config_status = gr.Textbox(label="Configuration Status", lines=3)
|
| 551 |
+
|
| 552 |
+
# Step 1: Document Upload
|
| 553 |
+
with gr.Tab("1οΈβ£ Document Upload"):
|
| 554 |
+
gr.Markdown("### Step 1: Upload Your Financial PDF Document")
|
| 555 |
+
|
| 556 |
+
with gr.Row():
|
| 557 |
+
with gr.Column():
|
| 558 |
+
pdf_input = gr.File(label="Upload PDF Document", file_types=[".pdf"])
|
| 559 |
+
upload_btn = gr.Button("Extract Text from PDF", variant="primary")
|
| 560 |
+
|
| 561 |
+
with gr.Column():
|
| 562 |
+
extraction_output = gr.Textbox(label="Extracted Text Preview", lines=15, max_lines=20)
|
| 563 |
+
extraction_metadata = gr.JSON(label="Extraction Metadata")
|
| 564 |
+
|
| 565 |
+
# Step 2: Text Chunking
|
| 566 |
+
with gr.Tab("2οΈβ£ Text Chunking"):
|
| 567 |
+
gr.Markdown("### Step 2: Split Text into Manageable Chunks")
|
| 568 |
+
|
| 569 |
+
with gr.Row():
|
| 570 |
+
with gr.Column():
|
| 571 |
+
chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size (characters)")
|
| 572 |
+
overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap (characters)")
|
| 573 |
+
chunk_btn = gr.Button("Create Chunks", variant="primary")
|
| 574 |
+
|
| 575 |
+
with gr.Column():
|
| 576 |
+
chunks_output = gr.Textbox(label="Chunks Preview", lines=15, max_lines=20)
|
| 577 |
+
chunking_metadata = gr.JSON(label="Chunking Metadata")
|
| 578 |
+
|
| 579 |
+
# Step 3: Vector Storage
|
| 580 |
+
with gr.Tab("3οΈβ£ Vector Storage"):
|
| 581 |
+
gr.Markdown("### Step 3: Store Chunks in ChromaDB Vector Database")
|
| 582 |
+
|
| 583 |
+
with gr.Row():
|
| 584 |
+
with gr.Column():
|
| 585 |
+
doc_name = gr.Textbox(label="Document Name", value="financial_report", placeholder="Enter document name")
|
| 586 |
+
storage_btn = gr.Button("Store in ChromaDB", variant="primary")
|
| 587 |
+
|
| 588 |
+
with gr.Column():
|
| 589 |
+
storage_output = gr.Textbox(label="Storage Status", lines=5)
|
| 590 |
+
storage_metadata = gr.JSON(label="Storage Metadata")
|
| 591 |
+
|
| 592 |
+
# Step 4: Semantic Search
|
| 593 |
+
with gr.Tab("4οΈβ£ Semantic Search"):
|
| 594 |
+
gr.Markdown("### Step 4: Search for Relevant Information")
|
| 595 |
+
|
| 596 |
+
with gr.Row():
|
| 597 |
+
with gr.Column():
|
| 598 |
+
search_query = gr.Textbox(label="Enter your question", placeholder="e.g., What was the revenue growth in Q4?")
|
| 599 |
+
top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Number of results to retrieve")
|
| 600 |
+
search_btn = gr.Button("Search Vector Database", variant="primary")
|
| 601 |
+
|
| 602 |
+
with gr.Column():
|
| 603 |
+
search_results_text = gr.Textbox(label="Search Results", lines=15, max_lines=20)
|
| 604 |
+
search_metadata = gr.JSON(label="Search Metadata")
|
| 605 |
+
|
| 606 |
+
# Results table
|
| 607 |
+
results_table = gr.DataFrame(label="Top Matching Chunks - Structured View")
|
| 608 |
+
|
| 609 |
+
# Step 5: LLM Response Generation
|
| 610 |
+
with gr.Tab("5οΈβ£ LLM Response"):
|
| 611 |
+
gr.Markdown("### Step 5: Generate Final Answer using OpenAI")
|
| 612 |
+
gr.Markdown("*Note: OpenAI API key must be configured in the Configuration tab*")
|
| 613 |
+
|
| 614 |
+
with gr.Row():
|
| 615 |
+
with gr.Column():
|
| 616 |
+
generate_btn = gr.Button("Generate Final Response", variant="primary")
|
| 617 |
+
gr.Markdown("**Current Query:** Will use the query from Step 4")
|
| 618 |
+
|
| 619 |
+
with gr.Column():
|
| 620 |
+
final_response = gr.Textbox(label="AI Generated Response", lines=15, max_lines=20)
|
| 621 |
+
response_metadata = gr.JSON(label="Response Metadata")
|
| 622 |
+
|
| 623 |
+
# Complete Pipeline Tab
|
| 624 |
+
with gr.Tab("π Complete Pipeline"):
|
| 625 |
+
gr.Markdown("### Run the Complete RAG Pipeline")
|
| 626 |
+
gr.Markdown("*Note: Make sure to configure API keys in the Configuration tab first*")
|
| 627 |
+
|
| 628 |
+
with gr.Row():
|
| 629 |
+
with gr.Column():
|
| 630 |
+
complete_pdf = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 631 |
+
complete_query = gr.Textbox(label="Your Question", placeholder="Ask about the financial document")
|
| 632 |
+
|
| 633 |
+
with gr.Column():
|
| 634 |
+
complete_chunk_size = gr.Slider(minimum=200, maximum=2000, value=1000, label="Chunk Size")
|
| 635 |
+
complete_overlap = gr.Slider(minimum=0, maximum=500, value=200, label="Overlap")
|
| 636 |
+
complete_top_k = gr.Slider(minimum=1, maximum=10, value=5, label="Top K Results")
|
| 637 |
+
|
| 638 |
+
complete_btn = gr.Button("Run Complete Pipeline", variant="primary", size="lg")
|
| 639 |
+
|
| 640 |
+
with gr.Row():
|
| 641 |
+
pipeline_status = gr.Textbox(label="Pipeline Status", lines=10)
|
| 642 |
+
pipeline_response = gr.Textbox(label="Final Answer", lines=10)
|
| 643 |
+
|
| 644 |
+
# Event handlers
|
| 645 |
+
config_btn.click(
|
| 646 |
+
configure_openai_api,
|
| 647 |
+
inputs=[openai_key_input],
|
| 648 |
+
outputs=[config_status]
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
upload_btn.click(
|
| 652 |
+
process_pdf_upload,
|
| 653 |
+
inputs=[pdf_input],
|
| 654 |
+
outputs=[extraction_output, extraction_metadata]
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
chunk_btn.click(
|
| 658 |
+
process_chunking,
|
| 659 |
+
inputs=[extraction_output, chunk_size, overlap],
|
| 660 |
+
outputs=[chunks_output, chunking_metadata]
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
storage_btn.click(
|
| 664 |
+
process_vector_storage,
|
| 665 |
+
inputs=[extraction_output, chunk_size, overlap, doc_name],
|
| 666 |
+
outputs=[storage_output, storage_metadata]
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
search_btn.click(
|
| 670 |
+
process_semantic_search,
|
| 671 |
+
inputs=[search_query, top_k],
|
| 672 |
+
outputs=[search_results_text, search_metadata, results_table]
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
generate_btn.click(
|
| 676 |
+
generate_final_response,
|
| 677 |
+
inputs=[search_query, top_k],
|
| 678 |
+
outputs=[final_response, response_metadata]
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
# Complete pipeline function
|
| 682 |
+
def run_complete_pipeline(pdf_file, query, chunk_size, overlap, top_k):
|
| 683 |
+
if not pdf_file or not query:
|
| 684 |
+
return "Please provide PDF file and query", ""
|
| 685 |
+
|
| 686 |
+
if not rag_pipeline.openai_client:
|
| 687 |
+
return "Please configure OpenAI API key in the Configuration tab first", ""
|
| 688 |
+
|
| 689 |
+
if not rag_pipeline.chroma_client:
|
| 690 |
+
return "ChromaDB local database not available. Please restart the application.", ""
|
| 691 |
+
|
| 692 |
+
status = "Starting RAG Pipeline...\n\n"
|
| 693 |
+
status += "Using: ChromaDB Local + OpenAI API\n"
|
| 694 |
+
status += "Storage: ./chroma_db directory\n\n"
|
| 695 |
+
|
| 696 |
+
try:
|
| 697 |
+
# Step 1: Extract text
|
| 698 |
+
status += "Step 1: Extracting text from PDF...\n"
|
| 699 |
+
text, _ = rag_pipeline.extract_text_from_pdf(pdf_file)
|
| 700 |
+
if text.startswith("Error"):
|
| 701 |
+
return status + f"Failed: {text}", ""
|
| 702 |
+
status += "β
Text extraction completed\n\n"
|
| 703 |
+
|
| 704 |
+
# Step 2: Chunk text
|
| 705 |
+
status += "Step 2: Chunking text...\n"
|
| 706 |
+
chunks, _ = rag_pipeline.chunk_text(text, chunk_size, overlap)
|
| 707 |
+
status += f"β
Created {len(chunks)} chunks\n\n"
|
| 708 |
+
|
| 709 |
+
# Step 3: Store in vector DB
|
| 710 |
+
status += f"Step 3: Generating OpenAI embeddings and storing in ChromaDB Local...\n"
|
| 711 |
+
storage_result = rag_pipeline.store_in_chromadb(chunks, "complete_pipeline_doc")
|
| 712 |
+
if "error" in storage_result:
|
| 713 |
+
return status + f"Failed: {storage_result['error']}", ""
|
| 714 |
+
status += f"β
Vectors stored in ChromaDB Local using OpenAI embeddings\n\n"
|
| 715 |
+
|
| 716 |
+
# Step 4: Search
|
| 717 |
+
status += "Step 4: Performing semantic search with OpenAI embeddings...\n"
|
| 718 |
+
search_results, _ = rag_pipeline.semantic_search(query, top_k)
|
| 719 |
+
if not search_results:
|
| 720 |
+
return status + "β No search results found", ""
|
| 721 |
+
status += f"β
Found {len(search_results)} relevant chunks\n\n"
|
| 722 |
+
|
| 723 |
+
# Step 5: Generate response
|
| 724 |
+
status += "Step 5: Generating LLM response...\n"
|
| 725 |
+
response, _ = rag_pipeline.generate_llm_response(query, search_results)
|
| 726 |
+
if response.startswith("LLM Generation failed"):
|
| 727 |
+
return status + f"Failed: {response}", ""
|
| 728 |
+
status += "β
Final response generated successfully!"
|
| 729 |
+
|
| 730 |
+
return status, response
|
| 731 |
+
|
| 732 |
+
except Exception as e:
|
| 733 |
+
return status + f"β Pipeline failed: {str(e)}", ""
|
| 734 |
+
|
| 735 |
+
complete_btn.click(
|
| 736 |
+
run_complete_pipeline,
|
| 737 |
+
inputs=[complete_pdf, complete_query, complete_chunk_size, complete_overlap, complete_top_k],
|
| 738 |
+
outputs=[pipeline_status, pipeline_response]
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
return demo
|
| 742 |
+
|
| 743 |
+
# Launch the application
|
| 744 |
+
if __name__ == "__main__":
|
| 745 |
+
# Install required packages
|
| 746 |
+
print("Starting RAG Pipeline Demo...")
|
| 747 |
+
print("Make sure you have installed the required packages:")
|
| 748 |
+
print("pip install gradio PyPDF2 chromadb openai pandas numpy")
|
| 749 |
+
print("\nConfiguration:")
|
| 750 |
+
print("β
ChromaDB: Local storage (./chroma_db directory)")
|
| 751 |
+
print("π OpenAI: API key required for embeddings + LLM")
|
| 752 |
+
print("π Data persistence: Enabled across sessions")
|
| 753 |
+
|
| 754 |
+
# Create and launch the Gradio interface
|
| 755 |
+
demo = create_gradio_interface()
|
| 756 |
+
demo.launch()
|