Spaces:
Build error
Build error
| import os | |
| import uuid | |
| import asyncio | |
| import subprocess | |
| import json | |
| from zipfile import ZipFile | |
| import stat | |
| import gradio as gr | |
| import ffmpeg | |
| import cv2 | |
| import edge_tts | |
| from googletrans import Translator | |
| from huggingface_hub import HfApi | |
| import moviepy.editor as mp | |
| import spaces | |
| # Constants and initialization | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| REPO_ID = "artificialguybr/video-dubbing" | |
| MAX_VIDEO_DURATION = 60 # seconds | |
| api = HfApi(token=HF_TOKEN) | |
| # Extract and set permissions for ffmpeg | |
| ZipFile("ffmpeg.zip").extractall() | |
| st = os.stat('ffmpeg') | |
| os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC) | |
| language_mapping = { | |
| 'English': ('en', 'en-US-EricNeural'), | |
| 'Spanish': ('es', 'es-ES-AlvaroNeural'), | |
| 'French': ('fr', 'fr-FR-HenriNeural'), | |
| 'German': ('de', 'de-DE-ConradNeural'), | |
| 'Italian': ('it', 'it-IT-DiegoNeural'), | |
| 'Portuguese': ('pt', 'pt-PT-DuarteNeural'), | |
| 'Polish': ('pl', 'pl-PL-MarekNeural'), | |
| 'Turkish': ('tr', 'tr-TR-AhmetNeural'), | |
| 'Russian': ('ru', 'ru-RU-DmitryNeural'), | |
| 'Dutch': ('nl', 'nl-NL-MaartenNeural'), | |
| 'Czech': ('cs', 'cs-CZ-AntoninNeural'), | |
| 'Arabic': ('ar', 'ar-SA-HamedNeural'), | |
| 'Chinese (Simplified)': ('zh-CN', 'zh-CN-YunxiNeural'), | |
| 'Japanese': ('ja', 'ja-JP-KeitaNeural'), | |
| 'Korean': ('ko', 'ko-KR-InJoonNeural'), | |
| 'Hindi': ('hi', 'hi-IN-MadhurNeural'), | |
| 'Swedish': ('sv', 'sv-SE-MattiasNeural'), | |
| 'Danish': ('da', 'da-DK-JeppeNeural'), | |
| 'Finnish': ('fi', 'fi-FI-HarriNeural'), | |
| 'Greek': ('el', 'el-GR-NestorasNeural') | |
| } | |
| print("Starting the program...") | |
| def generate_unique_filename(extension): | |
| return f"{uuid.uuid4()}{extension}" | |
| def cleanup_files(*files): | |
| for file in files: | |
| if file and os.path.exists(file): | |
| os.remove(file) | |
| print(f"Removed file: {file}") | |
| def transcribe_audio(file_path): | |
| print(f"Starting transcription of file: {file_path}") | |
| temp_audio = None | |
| if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): | |
| print("Video file detected. Extracting audio...") | |
| try: | |
| video = mp.VideoFileClip(file_path) | |
| temp_audio = generate_unique_filename(".wav") | |
| video.audio.write_audiofile(temp_audio) | |
| file_path = temp_audio | |
| except Exception as e: | |
| print(f"Error extracting audio from video: {e}") | |
| raise | |
| output_file = generate_unique_filename(".json") | |
| command = [ | |
| "insanely-fast-whisper", | |
| "--file-name", file_path, | |
| "--device-id", "0", | |
| "--model-name", "openai/whisper-large-v3", | |
| "--task", "transcribe", | |
| "--timestamp", "chunk", | |
| "--transcript-path", output_file | |
| ] | |
| try: | |
| result = subprocess.run(command, check=True, capture_output=True, text=True) | |
| print(f"Transcription output: {result.stdout}") | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error running insanely-fast-whisper: {e}") | |
| raise | |
| try: | |
| with open(output_file, "r") as f: | |
| transcription = json.load(f) | |
| except json.JSONDecodeError as e: | |
| print(f"Error decoding JSON: {e}") | |
| raise | |
| result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])) | |
| cleanup_files(output_file, temp_audio) | |
| return result | |
| async def text_to_speech(text, voice, output_file): | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| def process_video(video, target_language, use_wav2lip): | |
| try: | |
| if target_language is None: | |
| raise ValueError("Please select a Target Language for Dubbing.") | |
| run_uuid = uuid.uuid4().hex[:6] | |
| output_filename = f"{run_uuid}_resized_video.mp4" | |
| ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run() | |
| video_path = output_filename | |
| if not os.path.exists(video_path): | |
| raise FileNotFoundError(f"Error: {video_path} does not exist.") | |
| video_info = ffmpeg.probe(video_path) | |
| video_duration = float(video_info['streams'][0]['duration']) | |
| if video_duration > MAX_VIDEO_DURATION: | |
| cleanup_files(video_path) | |
| raise ValueError(f"Video duration exceeds {MAX_VIDEO_DURATION} seconds. Please upload a shorter video.") | |
| ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run() | |
| subprocess.run(f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav", shell=True, check=True) | |
| whisper_text = transcribe_audio(f"{run_uuid}_output_audio_final.wav") | |
| print(f"Transcription successful: {whisper_text}") | |
| target_language_code, voice = language_mapping[target_language] | |
| translator = Translator() | |
| translated_text = translator.translate(whisper_text, dest=target_language_code).text | |
| print(f"Translated text: {translated_text}") | |
| asyncio.run(text_to_speech(translated_text, voice, f"{run_uuid}_output_synth.wav")) | |
| if use_wav2lip: | |
| try: | |
| subprocess.run(f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face '{video_path}' --audio '{run_uuid}_output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'", shell=True, check=True) | |
| except subprocess.CalledProcessError as e: | |
| print(f"Wav2Lip error: {str(e)}") | |
| gr.Warning("Wav2lip encountered an error. Falling back to simple audio replacement.") | |
| subprocess.run(f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4", shell=True, check=True) | |
| else: | |
| subprocess.run(f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4", shell=True, check=True) | |
| output_video_path = f"{run_uuid}_output_video.mp4" | |
| if not os.path.exists(output_video_path): | |
| raise FileNotFoundError(f"Error: {output_video_path} was not generated.") | |
| cleanup_files( | |
| f"{run_uuid}_resized_video.mp4", | |
| f"{run_uuid}_output_audio.wav", | |
| f"{run_uuid}_output_audio_final.wav", | |
| f"{run_uuid}_output_synth.wav" | |
| ) | |
| return output_video_path, "" | |
| except Exception as e: | |
| print(f"Error in process_video: {str(e)}") | |
| return None, f"Error: {str(e)}" | |
| # Gradio interface setup | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# AI Video Dubbing") | |
| gr.Markdown("This tool uses AI to dub videos into different languages. Upload a video, choose a target language, and get a dubbed version!") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| video_input = gr.Video(label="Upload Video") | |
| target_language = gr.Dropdown( | |
| choices=list(language_mapping.keys()), | |
| label="Target Language for Dubbing", | |
| value="Spanish" | |
| ) | |
| use_wav2lip = gr.Checkbox( | |
| label="Use Wav2Lip for lip sync", | |
| value=False, | |
| info="Enable this if the video has close-up faces. May not work for all videos." | |
| ) | |
| submit_button = gr.Button("Process Video", variant="primary") | |
| with gr.Column(scale=2): | |
| output_video = gr.Video(label="Processed Video") | |
| error_message = gr.Textbox(label="Status/Error Message") | |
| submit_button.click( | |
| process_video, | |
| inputs=[video_input, target_language, use_wav2lip], | |
| outputs=[output_video, error_message] | |
| ) | |
| gr.Markdown(""" | |
| ## Notes: | |
| - Video limit is 1 minute. The tool will dub all speakers using a single voice. | |
| - Processing may take up to 5 minutes. | |
| - This is an alpha version using open-source models. | |
| - Quality vs. speed trade-off was made for scalability and hardware limitations. | |
| - For videos longer than 1 minute, please duplicate this Space and adjust the limit in the code. | |
| """) | |
| gr.Markdown(""" | |
| --- | |
| Developed by [@artificialguybr](https://twitter.com/artificialguybr) using open-source tools. | |
| Special thanks to Hugging Face for GPU support and [@yeswondwer](https://twitter.com/@yeswondwerr) for the original code. | |
| Try our [Video Transcription and Translation](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) tool! | |
| """) | |
| print("Launching Gradio interface...") | |
| demo.queue() | |
| demo.launch() |