Spaces:
Sleeping
Sleeping
| import torch | |
| import random | |
| import gradio as gr | |
| from peft import PeftModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| checkpoint_path = "microsoft/Phi-3-mini-4k-instruct" | |
| model_kwargs = dict( | |
| use_cache=False, | |
| trust_remote_code=True, | |
| attn_implementation='eager', # loading the model with flash-attenstion support | |
| torch_dtype=torch.bfloat16, | |
| device_map=None | |
| ) | |
| base_model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs) | |
| new_model = "checkpoint_dir/checkpoint-100" # change to the path where your model is saved | |
| model = PeftModel.from_pretrained(base_model, new_model) | |
| model = model.merge_and_unload() | |
| tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| def infer(message, history): | |
| prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) | |
| outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95, max_time= 180) | |
| return outputs[0]['generated_text'][len(prompt):].strip() | |
| gr.ChatInterface(infer).launch() |