import torch import random import gradio as gr from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline checkpoint_path = "microsoft/Phi-3-mini-4k-instruct" model_kwargs = dict( use_cache=False, trust_remote_code=True, attn_implementation='eager', # loading the model with flash-attenstion support torch_dtype=torch.bfloat16, device_map=None ) base_model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs) new_model = "checkpoint_dir/checkpoint-100" # change to the path where your model is saved model = PeftModel.from_pretrained(base_model, new_model) model = model.merge_and_unload() tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def infer(message, history): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95, max_time= 180) return outputs[0]['generated_text'][len(prompt):].strip() gr.ChatInterface(infer).launch()