Spaces:
Sleeping
Sleeping
File size: 5,535 Bytes
87700f1 ec32911 87700f1 5d43fef ec32911 ba501c1 ec32911 5d43fef ec32911 839a101 ec32911 94627ea 5d43fef 839a101 ec32911 87700f1 ec32911 87700f1 655a5f6 87700f1 cbdd536 ec32911 5d43fef ec32911 5d43fef ec32911 5d43fef ec32911 5d43fef ec32911 5d43fef ec32911 5d43fef ec32911 609e92c ec32911 87700f1 ec32911 cbdd536 dced210 cbdd536 839a101 ec32911 cbdd536 ec32911 94627ea 87700f1 cbdd536 87700f1 1ac603d 31cffc8 87700f1 ec32911 fab33c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import cv2
import math
import torch
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from glob import glob
from utils.plots import Annotator, colors
from utils.augmentations import letterbox
from models.common import DetectMultiBackend
from utils.general import non_max_suppression, scale_boxes
from utils.torch_utils import select_device, smart_inference_mode
from pytorch_grad_cam import EigenCAM
import torchvision.transforms as transforms
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
weights = "runs/train/best_striped.pt"
data = "data.yaml"
# Load model
device = select_device('cpu')
model = DetectMultiBackend(weights=weights, device=device, fp16=False, data=data)
target_layers = [model.model.model[-2]]
false_detection_data = glob(os.path.join("false_detection", '*.jpg'))
false_detection_data = [x.replace('\\', '/') for x in false_detection_data]
def resize_image_pil(image, new_width, new_height):
# Convert to PIL image
img = Image.fromarray(np.array(image))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
# Resize
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
# Crop to exact size
resized = resized.crop((0, 0, new_width, new_height))
return resized
def display_false_detection_data(false_detection_data, number_of_samples):
fig = plt.figure(figsize=(10, 10))
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = cv2.imread(false_detection_data[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.xticks([])
plt.yticks([])
return fig
def inference(input_img, conf_thres, iou_thres, is_eigen_cam=True, is_false_detection_images=True, num_false_detection_images=10):
stride, names, pt = model.stride, model.names, model.pt
# Load image
img0 = input_img.copy()
img = letterbox(img0, 640, stride=stride, auto=True)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device).float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img, augment=False, visualize=False)
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=None, max_det=1000)
# Process predictions
seen = 0
for i, det in enumerate(pred): # per image
seen += 1
annotator = Annotator(img0, line_width=2, example=str(model.names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], img0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f'{names[c]} {conf:.2f}'
annotator.box_label(xyxy, label, color=colors(c, True))
if is_false_detection_images:
# Plot the misclassified data
misclassified_images = display_false_detection_data(false_detection_data, number_of_samples=num_false_detection_images)
else:
misclassified_images = None
if is_eigen_cam:
img_GC = cv2.resize(input_img, (640, 640))
rgb_img = img_GC.copy()
img_GC = np.float32(img_GC) / 255
transform = transforms.ToTensor()
tensor = transform(img_GC).unsqueeze(0)
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
cam_image = show_cam_on_image(img_GC, grayscale_cam, use_rgb=True)
else:
cam_image = None
return img0, cam_image, misclassified_images
title = "YOLOv9 model to detect shirt/tshirt"
description = "A simple Gradio interface to infer on YOLOv9 model and detect tshirt in image"
examples = [["image_1.jpg", 0.25, 0.45, True, True, 10],
["image_2.jpg", 0.25, 0.45, True, True, 10],
["image_3.jpg", 0.25, 0.45, True, True, 10],
["image_4.jpg", 0.25, 0.45, True, True, 10],
["image_5.jpg", 0.25, 0.45, True, True, 10],
["image_6.jpg", 0.25, 0.45, True, True, 10],
["image_7.jpg", 0.25, 0.45, True, True, 10],
["image_8.jpg", 0.25, 0.45, True, True, 10],
["image_9.jpg", 0.25, 0.45, True, True, 10],
["image_10.jpg", 0.25, 0.45, True, True, 10]]
demo = gr.Interface(inference,
inputs = [gr.Image(width=320, height=320, label="Input Image"),
gr.Slider(0, 1, 0.25, label="Confidence Threshold"),
gr.Slider(0, 1, 0.45, label="IoU Thresold"),
gr.Checkbox(label="Show Eigen CAM"),
gr.Checkbox(label="Show False Detection"),
gr.Slider(5, 35, value=10, step=5, label="Number of False Detection")],
outputs= [gr.Image(width=640, height=640, label="Output"),
gr.Image(label="EigenCAM"),
gr.Plot(label="False Detection")],
title=title,
description=description,
examples=examples)
demo.launch() |