Spaces:
Sleeping
Sleeping
| """PyTorch implementation of the Lion optimizer.""" | |
| import torch | |
| from torch.optim.optimizer import Optimizer | |
| class Lion(Optimizer): | |
| r"""Implements Lion algorithm.""" | |
| def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0): | |
| """Initialize the hyperparameters. | |
| Args: | |
| params (iterable): iterable of parameters to optimize or dicts defining | |
| parameter groups | |
| lr (float, optional): learning rate (default: 1e-4) | |
| betas (Tuple[float, float], optional): coefficients used for computing | |
| running averages of gradient and its square (default: (0.9, 0.99)) | |
| weight_decay (float, optional): weight decay coefficient (default: 0) | |
| """ | |
| if not 0.0 <= lr: | |
| raise ValueError('Invalid learning rate: {}'.format(lr)) | |
| if not 0.0 <= betas[0] < 1.0: | |
| raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) | |
| if not 0.0 <= betas[1] < 1.0: | |
| raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) | |
| defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) | |
| super().__init__(params, defaults) | |
| def step(self, closure=None): | |
| """Performs a single optimization step. | |
| Args: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| Returns: | |
| the loss. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| with torch.enable_grad(): | |
| loss = closure() | |
| for group in self.param_groups: | |
| for p in group['params']: | |
| if p.grad is None: | |
| continue | |
| # Perform stepweight decay | |
| p.data.mul_(1 - group['lr'] * group['weight_decay']) | |
| grad = p.grad | |
| state = self.state[p] | |
| # State initialization | |
| if len(state) == 0: | |
| # Exponential moving average of gradient values | |
| state['exp_avg'] = torch.zeros_like(p) | |
| exp_avg = state['exp_avg'] | |
| beta1, beta2 = group['betas'] | |
| # Weight update | |
| update = exp_avg * beta1 + grad * (1 - beta1) | |
| p.add_(torch.sign(update), alpha=-group['lr']) | |
| # Decay the momentum running average coefficient | |
| exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2) | |
| return loss |