Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| from torch.autograd import Function | |
| from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive | |
| class GuidedBackpropReLU(Function): | |
| def forward(self, input_img): | |
| positive_mask = (input_img > 0).type_as(input_img) | |
| output = torch.addcmul( | |
| torch.zeros( | |
| input_img.size()).type_as(input_img), | |
| input_img, | |
| positive_mask) | |
| self.save_for_backward(input_img, output) | |
| return output | |
| def backward(self, grad_output): | |
| input_img, output = self.saved_tensors | |
| grad_input = None | |
| positive_mask_1 = (input_img > 0).type_as(grad_output) | |
| positive_mask_2 = (grad_output > 0).type_as(grad_output) | |
| grad_input = torch.addcmul( | |
| torch.zeros( | |
| input_img.size()).type_as(input_img), | |
| torch.addcmul( | |
| torch.zeros( | |
| input_img.size()).type_as(input_img), | |
| grad_output, | |
| positive_mask_1), | |
| positive_mask_2) | |
| return grad_input | |
| class GuidedBackpropReLUasModule(torch.nn.Module): | |
| def __init__(self): | |
| super(GuidedBackpropReLUasModule, self).__init__() | |
| def forward(self, input_img): | |
| return GuidedBackpropReLU.apply(input_img) | |
| class GuidedBackpropReLUModel: | |
| def __init__(self, model, device): | |
| self.model = model | |
| self.model.eval() | |
| self.device = next(self.model.parameters()).device | |
| def forward(self, input_img): | |
| return self.model(input_img) | |
| def recursive_replace_relu_with_guidedrelu(self, module_top): | |
| for idx, module in module_top._modules.items(): | |
| self.recursive_replace_relu_with_guidedrelu(module) | |
| if module.__class__.__name__ == 'ReLU': | |
| module_top._modules[idx] = GuidedBackpropReLU.apply | |
| print("b") | |
| def recursive_replace_guidedrelu_with_relu(self, module_top): | |
| try: | |
| for idx, module in module_top._modules.items(): | |
| self.recursive_replace_guidedrelu_with_relu(module) | |
| if module == GuidedBackpropReLU.apply: | |
| module_top._modules[idx] = torch.nn.ReLU() | |
| except BaseException: | |
| pass | |
| def __call__(self, input_img, target_category=None): | |
| replace_all_layer_type_recursive(self.model, | |
| torch.nn.ReLU, | |
| GuidedBackpropReLUasModule()) | |
| input_img = input_img.to(self.device) | |
| input_img = input_img.requires_grad_(True) | |
| output = self.forward(input_img) | |
| if target_category is None: | |
| target_category = np.argmax(output.cpu().data.numpy()) | |
| loss = output[0, target_category] | |
| loss.backward(retain_graph=True) | |
| output = input_img.grad.cpu().data.numpy() | |
| output = output[0, :, :, :] | |
| output = output.transpose((1, 2, 0)) | |
| replace_all_layer_type_recursive(self.model, | |
| GuidedBackpropReLUasModule, | |
| torch.nn.ReLU()) | |
| return output | |