Spaces:
Sleeping
Sleeping
| import contextlib | |
| import math | |
| import os | |
| from copy import copy | |
| from pathlib import Path | |
| from urllib.error import URLError | |
| import cv2 | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| import seaborn as sn | |
| import torch | |
| from PIL import Image, ImageDraw, ImageFont | |
| from utils import TryExcept, threaded | |
| from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path, | |
| is_ascii, xywh2xyxy, xyxy2xywh) | |
| from utils.metrics import fitness | |
| from utils.segment.general import scale_image | |
| # Settings | |
| RANK = int(os.getenv('RANK', -1)) | |
| matplotlib.rc('font', **{'size': 11}) | |
| matplotlib.use('Agg') # for writing to files only | |
| class Colors: | |
| # Ultralytics color palette https://ultralytics.com/ | |
| def __init__(self): | |
| # hex = matplotlib.colors.TABLEAU_COLORS.values() | |
| hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |
| '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |
| self.palette = [self.hex2rgb(f'#{c}') for c in hexs] | |
| self.n = len(self.palette) | |
| def __call__(self, i, bgr=False): | |
| c = self.palette[int(i) % self.n] | |
| return (c[2], c[1], c[0]) if bgr else c | |
| def hex2rgb(h): # rgb order (PIL) | |
| return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
| colors = Colors() # create instance for 'from utils.plots import colors' | |
| def check_pil_font(font=FONT, size=10): | |
| # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary | |
| font = Path(font) | |
| font = font if font.exists() else (CONFIG_DIR / font.name) | |
| try: | |
| return ImageFont.truetype(str(font) if font.exists() else font.name, size) | |
| except Exception: # download if missing | |
| try: | |
| check_font(font) | |
| return ImageFont.truetype(str(font), size) | |
| except TypeError: | |
| check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 | |
| except URLError: # not online | |
| return ImageFont.load_default() | |
| class Annotator: | |
| # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations | |
| def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): | |
| assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' | |
| non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic | |
| self.pil = pil or non_ascii | |
| if self.pil: # use PIL | |
| self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
| self.draw = ImageDraw.Draw(self.im) | |
| self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font, | |
| size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) | |
| else: # use cv2 | |
| self.im = im | |
| self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width | |
| def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): | |
| # Add one xyxy box to image with label | |
| if self.pil or not is_ascii(label): | |
| self.draw.rectangle(box, width=self.lw, outline=color) # box | |
| if label: | |
| w, h = self.font.getsize(label) # text width, height | |
| outside = box[1] - h >= 0 # label fits outside box | |
| self.draw.rectangle( | |
| (box[0], box[1] - h if outside else box[1], box[0] + w + 1, | |
| box[1] + 1 if outside else box[1] + h + 1), | |
| fill=color, | |
| ) | |
| # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 | |
| self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) | |
| else: # cv2 | |
| p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) | |
| cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) | |
| if label: | |
| tf = max(self.lw - 1, 1) # font thickness | |
| w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |
| outside = p1[1] - h >= 3 | |
| p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 | |
| cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled | |
| cv2.putText(self.im, | |
| label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), | |
| 0, | |
| self.lw / 3, | |
| txt_color, | |
| thickness=tf, | |
| lineType=cv2.LINE_AA) | |
| def masks(self, masks, colors, im_gpu=None, alpha=0.5): | |
| """Plot masks at once. | |
| Args: | |
| masks (tensor): predicted masks on cuda, shape: [n, h, w] | |
| colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] | |
| im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] | |
| alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque | |
| """ | |
| if self.pil: | |
| # convert to numpy first | |
| self.im = np.asarray(self.im).copy() | |
| if im_gpu is None: | |
| # Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...) | |
| if len(masks) == 0: | |
| return | |
| if isinstance(masks, torch.Tensor): | |
| masks = torch.as_tensor(masks, dtype=torch.uint8) | |
| masks = masks.permute(1, 2, 0).contiguous() | |
| masks = masks.cpu().numpy() | |
| # masks = np.ascontiguousarray(masks.transpose(1, 2, 0)) | |
| masks = scale_image(masks.shape[:2], masks, self.im.shape) | |
| masks = np.asarray(masks, dtype=np.float32) | |
| colors = np.asarray(colors, dtype=np.float32) # shape(n,3) | |
| s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together | |
| masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3) | |
| self.im[:] = masks * alpha + self.im * (1 - s * alpha) | |
| else: | |
| if len(masks) == 0: | |
| self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 | |
| colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0 | |
| colors = colors[:, None, None] # shape(n,1,1,3) | |
| masks = masks.unsqueeze(3) # shape(n,h,w,1) | |
| masks_color = masks * (colors * alpha) # shape(n,h,w,3) | |
| inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) | |
| mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3) | |
| im_gpu = im_gpu.flip(dims=[0]) # flip channel | |
| im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) | |
| im_gpu = im_gpu * inv_alph_masks[-1] + mcs | |
| im_mask = (im_gpu * 255).byte().cpu().numpy() | |
| self.im[:] = scale_image(im_gpu.shape, im_mask, self.im.shape) | |
| if self.pil: | |
| # convert im back to PIL and update draw | |
| self.fromarray(self.im) | |
| def rectangle(self, xy, fill=None, outline=None, width=1): | |
| # Add rectangle to image (PIL-only) | |
| self.draw.rectangle(xy, fill, outline, width) | |
| def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'): | |
| # Add text to image (PIL-only) | |
| if anchor == 'bottom': # start y from font bottom | |
| w, h = self.font.getsize(text) # text width, height | |
| xy[1] += 1 - h | |
| self.draw.text(xy, text, fill=txt_color, font=self.font) | |
| def fromarray(self, im): | |
| # Update self.im from a numpy array | |
| self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
| self.draw = ImageDraw.Draw(self.im) | |
| def result(self): | |
| # Return annotated image as array | |
| return np.asarray(self.im) | |
| def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): | |
| """ | |
| x: Features to be visualized | |
| module_type: Module type | |
| stage: Module stage within model | |
| n: Maximum number of feature maps to plot | |
| save_dir: Directory to save results | |
| """ | |
| if 'Detect' not in module_type: | |
| batch, channels, height, width = x.shape # batch, channels, height, width | |
| if height > 1 and width > 1: | |
| f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename | |
| blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels | |
| n = min(n, channels) # number of plots | |
| fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols | |
| ax = ax.ravel() | |
| plt.subplots_adjust(wspace=0.05, hspace=0.05) | |
| for i in range(n): | |
| ax[i].imshow(blocks[i].squeeze()) # cmap='gray' | |
| ax[i].axis('off') | |
| LOGGER.info(f'Saving {f}... ({n}/{channels})') | |
| plt.savefig(f, dpi=300, bbox_inches='tight') | |
| plt.close() | |
| np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save | |
| def hist2d(x, y, n=100): | |
| # 2d histogram used in labels.png and evolve.png | |
| xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) | |
| hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) | |
| xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) | |
| yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) | |
| return np.log(hist[xidx, yidx]) | |
| def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |
| from scipy.signal import butter, filtfilt | |
| # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |
| def butter_lowpass(cutoff, fs, order): | |
| nyq = 0.5 * fs | |
| normal_cutoff = cutoff / nyq | |
| return butter(order, normal_cutoff, btype='low', analog=False) | |
| b, a = butter_lowpass(cutoff, fs, order=order) | |
| return filtfilt(b, a, data) # forward-backward filter | |
| def output_to_target(output, max_det=300): | |
| # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting | |
| targets = [] | |
| for i, o in enumerate(output): | |
| box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) | |
| j = torch.full((conf.shape[0], 1), i) | |
| targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) | |
| return torch.cat(targets, 0).numpy() | |
| def plot_images(images, targets, paths=None, fname='images.jpg', names=None): | |
| # Plot image grid with labels | |
| if isinstance(images, torch.Tensor): | |
| images = images.cpu().float().numpy() | |
| if isinstance(targets, torch.Tensor): | |
| targets = targets.cpu().numpy() | |
| max_size = 1920 # max image size | |
| max_subplots = 16 # max image subplots, i.e. 4x4 | |
| bs, _, h, w = images.shape # batch size, _, height, width | |
| bs = min(bs, max_subplots) # limit plot images | |
| ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
| if np.max(images[0]) <= 1: | |
| images *= 255 # de-normalise (optional) | |
| # Build Image | |
| mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
| for i, im in enumerate(images): | |
| if i == max_subplots: # if last batch has fewer images than we expect | |
| break | |
| x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
| im = im.transpose(1, 2, 0) | |
| mosaic[y:y + h, x:x + w, :] = im | |
| # Resize (optional) | |
| scale = max_size / ns / max(h, w) | |
| if scale < 1: | |
| h = math.ceil(scale * h) | |
| w = math.ceil(scale * w) | |
| mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) | |
| # Annotate | |
| fs = int((h + w) * ns * 0.01) # font size | |
| annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) | |
| for i in range(i + 1): | |
| x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
| annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders | |
| if paths: | |
| annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames | |
| if len(targets) > 0: | |
| ti = targets[targets[:, 0] == i] # image targets | |
| boxes = xywh2xyxy(ti[:, 2:6]).T | |
| classes = ti[:, 1].astype('int') | |
| labels = ti.shape[1] == 6 # labels if no conf column | |
| conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) | |
| if boxes.shape[1]: | |
| if boxes.max() <= 1.01: # if normalized with tolerance 0.01 | |
| boxes[[0, 2]] *= w # scale to pixels | |
| boxes[[1, 3]] *= h | |
| elif scale < 1: # absolute coords need scale if image scales | |
| boxes *= scale | |
| boxes[[0, 2]] += x | |
| boxes[[1, 3]] += y | |
| for j, box in enumerate(boxes.T.tolist()): | |
| cls = classes[j] | |
| color = colors(cls) | |
| cls = names[cls] if names else cls | |
| if labels or conf[j] > 0.25: # 0.25 conf thresh | |
| label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' | |
| annotator.box_label(box, label, color=color) | |
| annotator.im.save(fname) # save | |
| def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |
| # Plot LR simulating training for full epochs | |
| optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals | |
| y = [] | |
| for _ in range(epochs): | |
| scheduler.step() | |
| y.append(optimizer.param_groups[0]['lr']) | |
| plt.plot(y, '.-', label='LR') | |
| plt.xlabel('epoch') | |
| plt.ylabel('LR') | |
| plt.grid() | |
| plt.xlim(0, epochs) | |
| plt.ylim(0) | |
| plt.savefig(Path(save_dir) / 'LR.png', dpi=200) | |
| plt.close() | |
| def plot_val_txt(): # from utils.plots import *; plot_val() | |
| # Plot val.txt histograms | |
| x = np.loadtxt('val.txt', dtype=np.float32) | |
| box = xyxy2xywh(x[:, :4]) | |
| cx, cy = box[:, 0], box[:, 1] | |
| fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) | |
| ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) | |
| ax.set_aspect('equal') | |
| plt.savefig('hist2d.png', dpi=300) | |
| fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) | |
| ax[0].hist(cx, bins=600) | |
| ax[1].hist(cy, bins=600) | |
| plt.savefig('hist1d.png', dpi=200) | |
| def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() | |
| # Plot targets.txt histograms | |
| x = np.loadtxt('targets.txt', dtype=np.float32).T | |
| s = ['x targets', 'y targets', 'width targets', 'height targets'] | |
| fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
| ax = ax.ravel() | |
| for i in range(4): | |
| ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') | |
| ax[i].legend() | |
| ax[i].set_title(s[i]) | |
| plt.savefig('targets.jpg', dpi=200) | |
| def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study() | |
| # Plot file=study.txt generated by val.py (or plot all study*.txt in dir) | |
| save_dir = Path(file).parent if file else Path(dir) | |
| plot2 = False # plot additional results | |
| if plot2: | |
| ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() | |
| fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) | |
| # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: | |
| for f in sorted(save_dir.glob('study*.txt')): | |
| y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T | |
| x = np.arange(y.shape[1]) if x is None else np.array(x) | |
| if plot2: | |
| s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] | |
| for i in range(7): | |
| ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) | |
| ax[i].set_title(s[i]) | |
| j = y[3].argmax() + 1 | |
| ax2.plot(y[5, 1:j], | |
| y[3, 1:j] * 1E2, | |
| '.-', | |
| linewidth=2, | |
| markersize=8, | |
| label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) | |
| ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], | |
| 'k.-', | |
| linewidth=2, | |
| markersize=8, | |
| alpha=.25, | |
| label='EfficientDet') | |
| ax2.grid(alpha=0.2) | |
| ax2.set_yticks(np.arange(20, 60, 5)) | |
| ax2.set_xlim(0, 57) | |
| ax2.set_ylim(25, 55) | |
| ax2.set_xlabel('GPU Speed (ms/img)') | |
| ax2.set_ylabel('COCO AP val') | |
| ax2.legend(loc='lower right') | |
| f = save_dir / 'study.png' | |
| print(f'Saving {f}...') | |
| plt.savefig(f, dpi=300) | |
| # known issue https://github.com/ultralytics/yolov5/issues/5395 | |
| def plot_labels(labels, names=(), save_dir=Path('')): | |
| # plot dataset labels | |
| LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") | |
| c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |
| nc = int(c.max() + 1) # number of classes | |
| x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |
| # seaborn correlogram | |
| sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |
| plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) | |
| plt.close() | |
| # matplotlib labels | |
| matplotlib.use('svg') # faster | |
| ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |
| y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
| with contextlib.suppress(Exception): # color histogram bars by class | |
| [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 | |
| ax[0].set_ylabel('instances') | |
| if 0 < len(names) < 30: | |
| ax[0].set_xticks(range(len(names))) | |
| ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) | |
| else: | |
| ax[0].set_xlabel('classes') | |
| sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) | |
| sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) | |
| # rectangles | |
| labels[:, 1:3] = 0.5 # center | |
| labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 | |
| img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) | |
| for cls, *box in labels[:1000]: | |
| ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |
| ax[1].imshow(img) | |
| ax[1].axis('off') | |
| for a in [0, 1, 2, 3]: | |
| for s in ['top', 'right', 'left', 'bottom']: | |
| ax[a].spines[s].set_visible(False) | |
| plt.savefig(save_dir / 'labels.jpg', dpi=200) | |
| matplotlib.use('Agg') | |
| plt.close() | |
| def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')): | |
| # Show classification image grid with labels (optional) and predictions (optional) | |
| from utils.augmentations import denormalize | |
| names = names or [f'class{i}' for i in range(1000)] | |
| blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im), | |
| dim=0) # select batch index 0, block by channels | |
| n = min(len(blocks), nmax) # number of plots | |
| m = min(8, round(n ** 0.5)) # 8 x 8 default | |
| fig, ax = plt.subplots(math.ceil(n / m), m) # 8 rows x n/8 cols | |
| ax = ax.ravel() if m > 1 else [ax] | |
| # plt.subplots_adjust(wspace=0.05, hspace=0.05) | |
| for i in range(n): | |
| ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0)) | |
| ax[i].axis('off') | |
| if labels is not None: | |
| s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '') | |
| ax[i].set_title(s, fontsize=8, verticalalignment='top') | |
| plt.savefig(f, dpi=300, bbox_inches='tight') | |
| plt.close() | |
| if verbose: | |
| LOGGER.info(f"Saving {f}") | |
| if labels is not None: | |
| LOGGER.info('True: ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax])) | |
| if pred is not None: | |
| LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax])) | |
| return f | |
| def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve() | |
| # Plot evolve.csv hyp evolution results | |
| evolve_csv = Path(evolve_csv) | |
| data = pd.read_csv(evolve_csv) | |
| keys = [x.strip() for x in data.columns] | |
| x = data.values | |
| f = fitness(x) | |
| j = np.argmax(f) # max fitness index | |
| plt.figure(figsize=(10, 12), tight_layout=True) | |
| matplotlib.rc('font', **{'size': 8}) | |
| print(f'Best results from row {j} of {evolve_csv}:') | |
| for i, k in enumerate(keys[7:]): | |
| v = x[:, 7 + i] | |
| mu = v[j] # best single result | |
| plt.subplot(6, 5, i + 1) | |
| plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') | |
| plt.plot(mu, f.max(), 'k+', markersize=15) | |
| plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters | |
| if i % 5 != 0: | |
| plt.yticks([]) | |
| print(f'{k:>15}: {mu:.3g}') | |
| f = evolve_csv.with_suffix('.png') # filename | |
| plt.savefig(f, dpi=200) | |
| plt.close() | |
| print(f'Saved {f}') | |
| def plot_results(file='path/to/results.csv', dir=''): | |
| # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') | |
| save_dir = Path(file).parent if file else Path(dir) | |
| fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |
| ax = ax.ravel() | |
| files = list(save_dir.glob('results*.csv')) | |
| assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' | |
| for f in files: | |
| try: | |
| data = pd.read_csv(f) | |
| s = [x.strip() for x in data.columns] | |
| x = data.values[:, 0] | |
| for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): | |
| y = data.values[:, j].astype('float') | |
| # y[y == 0] = np.nan # don't show zero values | |
| ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) | |
| ax[i].set_title(s[j], fontsize=12) | |
| # if j in [8, 9, 10]: # share train and val loss y axes | |
| # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
| except Exception as e: | |
| LOGGER.info(f'Warning: Plotting error for {f}: {e}') | |
| ax[1].legend() | |
| fig.savefig(save_dir / 'results.png', dpi=200) | |
| plt.close() | |
| def profile_idetection(start=0, stop=0, labels=(), save_dir=''): | |
| # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() | |
| ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() | |
| s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] | |
| files = list(Path(save_dir).glob('frames*.txt')) | |
| for fi, f in enumerate(files): | |
| try: | |
| results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows | |
| n = results.shape[1] # number of rows | |
| x = np.arange(start, min(stop, n) if stop else n) | |
| results = results[:, x] | |
| t = (results[0] - results[0].min()) # set t0=0s | |
| results[0] = x | |
| for i, a in enumerate(ax): | |
| if i < len(results): | |
| label = labels[fi] if len(labels) else f.stem.replace('frames_', '') | |
| a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) | |
| a.set_title(s[i]) | |
| a.set_xlabel('time (s)') | |
| # if fi == len(files) - 1: | |
| # a.set_ylim(bottom=0) | |
| for side in ['top', 'right']: | |
| a.spines[side].set_visible(False) | |
| else: | |
| a.remove() | |
| except Exception as e: | |
| print(f'Warning: Plotting error for {f}; {e}') | |
| ax[1].legend() | |
| plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) | |
| def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): | |
| # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop | |
| xyxy = torch.tensor(xyxy).view(-1, 4) | |
| b = xyxy2xywh(xyxy) # boxes | |
| if square: | |
| b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square | |
| b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad | |
| xyxy = xywh2xyxy(b).long() | |
| clip_boxes(xyxy, im.shape) | |
| crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] | |
| if save: | |
| file.parent.mkdir(parents=True, exist_ok=True) # make directory | |
| f = str(increment_path(file).with_suffix('.jpg')) | |
| # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue | |
| Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB | |
| return crop | |