Spaces:
Sleeping
Sleeping
Commit
·
99e2d9c
1
Parent(s):
6af5ec3
Adding augmentations
Browse files- utils/augmentations.py +395 -0
utils/augmentations.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torchvision.transforms as T
|
| 8 |
+
import torchvision.transforms.functional as TF
|
| 9 |
+
|
| 10 |
+
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
| 11 |
+
from utils.metrics import bbox_ioa
|
| 12 |
+
|
| 13 |
+
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
| 14 |
+
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Albumentations:
|
| 18 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
| 19 |
+
def __init__(self, size=640):
|
| 20 |
+
self.transform = None
|
| 21 |
+
prefix = colorstr('albumentations: ')
|
| 22 |
+
try:
|
| 23 |
+
import albumentations as A
|
| 24 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
| 25 |
+
|
| 26 |
+
T = [
|
| 27 |
+
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
| 28 |
+
A.Blur(p=0.01),
|
| 29 |
+
A.MedianBlur(p=0.01),
|
| 30 |
+
A.ToGray(p=0.01),
|
| 31 |
+
A.CLAHE(p=0.01),
|
| 32 |
+
A.RandomBrightnessContrast(p=0.0),
|
| 33 |
+
A.RandomGamma(p=0.0),
|
| 34 |
+
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
| 35 |
+
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
| 36 |
+
|
| 37 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
| 38 |
+
except ImportError: # package not installed, skip
|
| 39 |
+
pass
|
| 40 |
+
except Exception as e:
|
| 41 |
+
LOGGER.info(f'{prefix}{e}')
|
| 42 |
+
|
| 43 |
+
def __call__(self, im, labels, p=1.0):
|
| 44 |
+
if self.transform and random.random() < p:
|
| 45 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
| 46 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
| 47 |
+
return im, labels
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
| 51 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
| 52 |
+
return TF.normalize(x, mean, std, inplace=inplace)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
| 56 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
| 57 |
+
for i in range(3):
|
| 58 |
+
x[:, i] = x[:, i] * std[i] + mean[i]
|
| 59 |
+
return x
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
| 63 |
+
# HSV color-space augmentation
|
| 64 |
+
if hgain or sgain or vgain:
|
| 65 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
| 66 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
| 67 |
+
dtype = im.dtype # uint8
|
| 68 |
+
|
| 69 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
| 70 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
| 71 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
| 72 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
| 73 |
+
|
| 74 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
| 75 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
| 79 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
| 80 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
| 81 |
+
if clahe:
|
| 82 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
| 83 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
| 84 |
+
else:
|
| 85 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
| 86 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def replicate(im, labels):
|
| 90 |
+
# Replicate labels
|
| 91 |
+
h, w = im.shape[:2]
|
| 92 |
+
boxes = labels[:, 1:].astype(int)
|
| 93 |
+
x1, y1, x2, y2 = boxes.T
|
| 94 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
| 95 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
| 96 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
| 97 |
+
bh, bw = y2b - y1b, x2b - x1b
|
| 98 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
| 99 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
| 100 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
| 101 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
| 102 |
+
|
| 103 |
+
return im, labels
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
| 107 |
+
# Resize and pad image while meeting stride-multiple constraints
|
| 108 |
+
shape = im.shape[:2] # current shape [height, width]
|
| 109 |
+
if isinstance(new_shape, int):
|
| 110 |
+
new_shape = (new_shape, new_shape)
|
| 111 |
+
|
| 112 |
+
# Scale ratio (new / old)
|
| 113 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 114 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
| 115 |
+
r = min(r, 1.0)
|
| 116 |
+
|
| 117 |
+
# Compute padding
|
| 118 |
+
ratio = r, r # width, height ratios
|
| 119 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 120 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 121 |
+
if auto: # minimum rectangle
|
| 122 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
| 123 |
+
elif scaleFill: # stretch
|
| 124 |
+
dw, dh = 0.0, 0.0
|
| 125 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 126 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 127 |
+
|
| 128 |
+
dw /= 2 # divide padding into 2 sides
|
| 129 |
+
dh /= 2
|
| 130 |
+
|
| 131 |
+
if shape[::-1] != new_unpad: # resize
|
| 132 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 133 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 134 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 135 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 136 |
+
return im, ratio, (dw, dh)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def random_perspective(im,
|
| 140 |
+
targets=(),
|
| 141 |
+
segments=(),
|
| 142 |
+
degrees=10,
|
| 143 |
+
translate=.1,
|
| 144 |
+
scale=.1,
|
| 145 |
+
shear=10,
|
| 146 |
+
perspective=0.0,
|
| 147 |
+
border=(0, 0)):
|
| 148 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
| 149 |
+
# targets = [cls, xyxy]
|
| 150 |
+
|
| 151 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
| 152 |
+
width = im.shape[1] + border[1] * 2
|
| 153 |
+
|
| 154 |
+
# Center
|
| 155 |
+
C = np.eye(3)
|
| 156 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
| 157 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
| 158 |
+
|
| 159 |
+
# Perspective
|
| 160 |
+
P = np.eye(3)
|
| 161 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
| 162 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
| 163 |
+
|
| 164 |
+
# Rotation and Scale
|
| 165 |
+
R = np.eye(3)
|
| 166 |
+
a = random.uniform(-degrees, degrees)
|
| 167 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
| 168 |
+
s = random.uniform(1 - scale, 1 + scale)
|
| 169 |
+
# s = 2 ** random.uniform(-scale, scale)
|
| 170 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
| 171 |
+
|
| 172 |
+
# Shear
|
| 173 |
+
S = np.eye(3)
|
| 174 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
| 175 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
| 176 |
+
|
| 177 |
+
# Translation
|
| 178 |
+
T = np.eye(3)
|
| 179 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
| 180 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
| 181 |
+
|
| 182 |
+
# Combined rotation matrix
|
| 183 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
| 184 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
| 185 |
+
if perspective:
|
| 186 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
| 187 |
+
else: # affine
|
| 188 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
| 189 |
+
|
| 190 |
+
# Visualize
|
| 191 |
+
# import matplotlib.pyplot as plt
|
| 192 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
| 193 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
| 194 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
| 195 |
+
|
| 196 |
+
# Transform label coordinates
|
| 197 |
+
n = len(targets)
|
| 198 |
+
if n:
|
| 199 |
+
use_segments = any(x.any() for x in segments)
|
| 200 |
+
new = np.zeros((n, 4))
|
| 201 |
+
if use_segments: # warp segments
|
| 202 |
+
segments = resample_segments(segments) # upsample
|
| 203 |
+
for i, segment in enumerate(segments):
|
| 204 |
+
xy = np.ones((len(segment), 3))
|
| 205 |
+
xy[:, :2] = segment
|
| 206 |
+
xy = xy @ M.T # transform
|
| 207 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
| 208 |
+
|
| 209 |
+
# clip
|
| 210 |
+
new[i] = segment2box(xy, width, height)
|
| 211 |
+
|
| 212 |
+
else: # warp boxes
|
| 213 |
+
xy = np.ones((n * 4, 3))
|
| 214 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
| 215 |
+
xy = xy @ M.T # transform
|
| 216 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
| 217 |
+
|
| 218 |
+
# create new boxes
|
| 219 |
+
x = xy[:, [0, 2, 4, 6]]
|
| 220 |
+
y = xy[:, [1, 3, 5, 7]]
|
| 221 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
| 222 |
+
|
| 223 |
+
# clip
|
| 224 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
| 225 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
| 226 |
+
|
| 227 |
+
# filter candidates
|
| 228 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
| 229 |
+
targets = targets[i]
|
| 230 |
+
targets[:, 1:5] = new[i]
|
| 231 |
+
|
| 232 |
+
return im, targets
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def copy_paste(im, labels, segments, p=0.5):
|
| 236 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
| 237 |
+
n = len(segments)
|
| 238 |
+
if p and n:
|
| 239 |
+
h, w, c = im.shape # height, width, channels
|
| 240 |
+
im_new = np.zeros(im.shape, np.uint8)
|
| 241 |
+
|
| 242 |
+
# calculate ioa first then select indexes randomly
|
| 243 |
+
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
|
| 244 |
+
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
|
| 245 |
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
| 246 |
+
n = len(indexes)
|
| 247 |
+
for j in random.sample(list(indexes), k=round(p * n)):
|
| 248 |
+
l, box, s = labels[j], boxes[j], segments[j]
|
| 249 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
| 250 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
| 251 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
| 252 |
+
|
| 253 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
| 254 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
| 255 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
| 256 |
+
|
| 257 |
+
return im, labels, segments
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def cutout(im, labels, p=0.5):
|
| 261 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
| 262 |
+
if random.random() < p:
|
| 263 |
+
h, w = im.shape[:2]
|
| 264 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
| 265 |
+
for s in scales:
|
| 266 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
| 267 |
+
mask_w = random.randint(1, int(w * s))
|
| 268 |
+
|
| 269 |
+
# box
|
| 270 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
| 271 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
| 272 |
+
xmax = min(w, xmin + mask_w)
|
| 273 |
+
ymax = min(h, ymin + mask_h)
|
| 274 |
+
|
| 275 |
+
# apply random color mask
|
| 276 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
| 277 |
+
|
| 278 |
+
# return unobscured labels
|
| 279 |
+
if len(labels) and s > 0.03:
|
| 280 |
+
box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32)
|
| 281 |
+
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area
|
| 282 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
| 283 |
+
|
| 284 |
+
return labels
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def mixup(im, labels, im2, labels2):
|
| 288 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
| 289 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
| 290 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
| 291 |
+
labels = np.concatenate((labels, labels2), 0)
|
| 292 |
+
return im, labels
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
| 296 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
| 297 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
| 298 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
| 299 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
| 300 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def classify_albumentations(
|
| 304 |
+
augment=True,
|
| 305 |
+
size=224,
|
| 306 |
+
scale=(0.08, 1.0),
|
| 307 |
+
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
| 308 |
+
hflip=0.5,
|
| 309 |
+
vflip=0.0,
|
| 310 |
+
jitter=0.4,
|
| 311 |
+
mean=IMAGENET_MEAN,
|
| 312 |
+
std=IMAGENET_STD,
|
| 313 |
+
auto_aug=False):
|
| 314 |
+
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
| 315 |
+
prefix = colorstr('albumentations: ')
|
| 316 |
+
try:
|
| 317 |
+
import albumentations as A
|
| 318 |
+
from albumentations.pytorch import ToTensorV2
|
| 319 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
| 320 |
+
if augment: # Resize and crop
|
| 321 |
+
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
| 322 |
+
if auto_aug:
|
| 323 |
+
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
| 324 |
+
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
| 325 |
+
else:
|
| 326 |
+
if hflip > 0:
|
| 327 |
+
T += [A.HorizontalFlip(p=hflip)]
|
| 328 |
+
if vflip > 0:
|
| 329 |
+
T += [A.VerticalFlip(p=vflip)]
|
| 330 |
+
if jitter > 0:
|
| 331 |
+
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
| 332 |
+
T += [A.ColorJitter(*color_jitter, 0)]
|
| 333 |
+
else: # Use fixed crop for eval set (reproducibility)
|
| 334 |
+
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
| 335 |
+
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
| 336 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
| 337 |
+
return A.Compose(T)
|
| 338 |
+
|
| 339 |
+
except ImportError: # package not installed, skip
|
| 340 |
+
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
| 341 |
+
except Exception as e:
|
| 342 |
+
LOGGER.info(f'{prefix}{e}')
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def classify_transforms(size=224):
|
| 346 |
+
# Transforms to apply if albumentations not installed
|
| 347 |
+
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
| 348 |
+
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
| 349 |
+
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class LetterBox:
|
| 353 |
+
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
| 354 |
+
def __init__(self, size=(640, 640), auto=False, stride=32):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
| 357 |
+
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
| 358 |
+
self.stride = stride # used with auto
|
| 359 |
+
|
| 360 |
+
def __call__(self, im): # im = np.array HWC
|
| 361 |
+
imh, imw = im.shape[:2]
|
| 362 |
+
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
| 363 |
+
h, w = round(imh * r), round(imw * r) # resized image
|
| 364 |
+
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
| 365 |
+
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
| 366 |
+
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
| 367 |
+
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
| 368 |
+
return im_out
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class CenterCrop:
|
| 372 |
+
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
| 373 |
+
def __init__(self, size=640):
|
| 374 |
+
super().__init__()
|
| 375 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
| 376 |
+
|
| 377 |
+
def __call__(self, im): # im = np.array HWC
|
| 378 |
+
imh, imw = im.shape[:2]
|
| 379 |
+
m = min(imh, imw) # min dimension
|
| 380 |
+
top, left = (imh - m) // 2, (imw - m) // 2
|
| 381 |
+
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class ToTensor:
|
| 385 |
+
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
| 386 |
+
def __init__(self, half=False):
|
| 387 |
+
super().__init__()
|
| 388 |
+
self.half = half
|
| 389 |
+
|
| 390 |
+
def __call__(self, im): # im = np.array HWC in BGR order
|
| 391 |
+
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
| 392 |
+
im = torch.from_numpy(im) # to torch
|
| 393 |
+
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
| 394 |
+
im /= 255.0 # 0-255 to 0.0-1.0
|
| 395 |
+
return im
|