Spaces:
Sleeping
Sleeping
Commit
·
9eb3c3e
1
Parent(s):
7117863
Minor fix
Browse files- models/yolo.py +818 -0
models/yolo.py
ADDED
|
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import platform
|
| 4 |
+
import sys
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
FILE = Path(__file__).resolve()
|
| 9 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
| 10 |
+
if str(ROOT) not in sys.path:
|
| 11 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 12 |
+
if platform.system() != 'Windows':
|
| 13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 14 |
+
|
| 15 |
+
from models.common import *
|
| 16 |
+
from models.experimental import *
|
| 17 |
+
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
| 18 |
+
from utils.plots import feature_visualization
|
| 19 |
+
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
| 20 |
+
time_sync)
|
| 21 |
+
from utils.tal.anchor_generator import make_anchors, dist2bbox
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
import thop # for FLOPs computation
|
| 25 |
+
except ImportError:
|
| 26 |
+
thop = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Detect(nn.Module):
|
| 30 |
+
# YOLO Detect head for detection models
|
| 31 |
+
dynamic = False # force grid reconstruction
|
| 32 |
+
export = False # export mode
|
| 33 |
+
shape = None
|
| 34 |
+
anchors = torch.empty(0) # init
|
| 35 |
+
strides = torch.empty(0) # init
|
| 36 |
+
|
| 37 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.nc = nc # number of classes
|
| 40 |
+
self.nl = len(ch) # number of detection layers
|
| 41 |
+
self.reg_max = 16
|
| 42 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 43 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 44 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 45 |
+
|
| 46 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 47 |
+
self.cv2 = nn.ModuleList(
|
| 48 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
| 49 |
+
self.cv3 = nn.ModuleList(
|
| 50 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
| 51 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
shape = x[0].shape # BCHW
|
| 55 |
+
for i in range(self.nl):
|
| 56 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
| 57 |
+
if self.training:
|
| 58 |
+
return x
|
| 59 |
+
elif self.dynamic or self.shape != shape:
|
| 60 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
| 61 |
+
self.shape = shape
|
| 62 |
+
|
| 63 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
| 64 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 65 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
| 66 |
+
return y if self.export else (y, x)
|
| 67 |
+
|
| 68 |
+
def bias_init(self):
|
| 69 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 70 |
+
m = self # self.model[-1] # Detect() module
|
| 71 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 72 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 73 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 74 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 75 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DDetect(nn.Module):
|
| 79 |
+
# YOLO Detect head for detection models
|
| 80 |
+
dynamic = False # force grid reconstruction
|
| 81 |
+
export = False # export mode
|
| 82 |
+
shape = None
|
| 83 |
+
anchors = torch.empty(0) # init
|
| 84 |
+
strides = torch.empty(0) # init
|
| 85 |
+
|
| 86 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.nc = nc # number of classes
|
| 89 |
+
self.nl = len(ch) # number of detection layers
|
| 90 |
+
self.reg_max = 16
|
| 91 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 92 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 93 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 94 |
+
|
| 95 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 96 |
+
self.cv2 = nn.ModuleList(
|
| 97 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
|
| 98 |
+
self.cv3 = nn.ModuleList(
|
| 99 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
| 100 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
shape = x[0].shape # BCHW
|
| 104 |
+
for i in range(self.nl):
|
| 105 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
| 106 |
+
if self.training:
|
| 107 |
+
return x
|
| 108 |
+
elif self.dynamic or self.shape != shape:
|
| 109 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
| 110 |
+
self.shape = shape
|
| 111 |
+
|
| 112 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
| 113 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 114 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
| 115 |
+
return y if self.export else (y, x)
|
| 116 |
+
|
| 117 |
+
def bias_init(self):
|
| 118 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 119 |
+
m = self # self.model[-1] # Detect() module
|
| 120 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 121 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 122 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 123 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 124 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class DualDetect(nn.Module):
|
| 128 |
+
# YOLO Detect head for detection models
|
| 129 |
+
dynamic = False # force grid reconstruction
|
| 130 |
+
export = False # export mode
|
| 131 |
+
shape = None
|
| 132 |
+
anchors = torch.empty(0) # init
|
| 133 |
+
strides = torch.empty(0) # init
|
| 134 |
+
|
| 135 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 136 |
+
super().__init__()
|
| 137 |
+
self.nc = nc # number of classes
|
| 138 |
+
self.nl = len(ch) // 2 # number of detection layers
|
| 139 |
+
self.reg_max = 16
|
| 140 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 141 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 142 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 143 |
+
|
| 144 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 145 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 146 |
+
self.cv2 = nn.ModuleList(
|
| 147 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
| 148 |
+
self.cv3 = nn.ModuleList(
|
| 149 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 150 |
+
self.cv4 = nn.ModuleList(
|
| 151 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
|
| 152 |
+
self.cv5 = nn.ModuleList(
|
| 153 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
| 154 |
+
self.dfl = DFL(self.reg_max)
|
| 155 |
+
self.dfl2 = DFL(self.reg_max)
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
shape = x[0].shape # BCHW
|
| 159 |
+
d1 = []
|
| 160 |
+
d2 = []
|
| 161 |
+
for i in range(self.nl):
|
| 162 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 163 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 164 |
+
if self.training:
|
| 165 |
+
return [d1, d2]
|
| 166 |
+
elif self.dynamic or self.shape != shape:
|
| 167 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 168 |
+
self.shape = shape
|
| 169 |
+
|
| 170 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 171 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 172 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 173 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 174 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
| 175 |
+
return y if self.export else (y, [d1, d2])
|
| 176 |
+
|
| 177 |
+
def bias_init(self):
|
| 178 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 179 |
+
m = self # self.model[-1] # Detect() module
|
| 180 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 181 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 182 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 183 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 184 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 185 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 186 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 187 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class DualDDetect(nn.Module):
|
| 191 |
+
# YOLO Detect head for detection models
|
| 192 |
+
dynamic = False # force grid reconstruction
|
| 193 |
+
export = False # export mode
|
| 194 |
+
shape = None
|
| 195 |
+
anchors = torch.empty(0) # init
|
| 196 |
+
strides = torch.empty(0) # init
|
| 197 |
+
|
| 198 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 199 |
+
super().__init__()
|
| 200 |
+
self.nc = nc # number of classes
|
| 201 |
+
self.nl = len(ch) // 2 # number of detection layers
|
| 202 |
+
self.reg_max = 16
|
| 203 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 204 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 205 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 206 |
+
|
| 207 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 208 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 209 |
+
self.cv2 = nn.ModuleList(
|
| 210 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
| 211 |
+
self.cv3 = nn.ModuleList(
|
| 212 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 213 |
+
self.cv4 = nn.ModuleList(
|
| 214 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
|
| 215 |
+
self.cv5 = nn.ModuleList(
|
| 216 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
| 217 |
+
self.dfl = DFL(self.reg_max)
|
| 218 |
+
self.dfl2 = DFL(self.reg_max)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
shape = x[0].shape # BCHW
|
| 222 |
+
d1 = []
|
| 223 |
+
d2 = []
|
| 224 |
+
for i in range(self.nl):
|
| 225 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 226 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 227 |
+
if self.training:
|
| 228 |
+
return [d1, d2]
|
| 229 |
+
elif self.dynamic or self.shape != shape:
|
| 230 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 231 |
+
self.shape = shape
|
| 232 |
+
|
| 233 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 234 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 235 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 236 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 237 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
| 238 |
+
return y if self.export else (y, [d1, d2])
|
| 239 |
+
#y = torch.cat((dbox2, cls2.sigmoid()), 1)
|
| 240 |
+
#return y if self.export else (y, d2)
|
| 241 |
+
#y1 = torch.cat((dbox, cls.sigmoid()), 1)
|
| 242 |
+
#y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
|
| 243 |
+
#return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
|
| 244 |
+
#return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
|
| 245 |
+
|
| 246 |
+
def bias_init(self):
|
| 247 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 248 |
+
m = self # self.model[-1] # Detect() module
|
| 249 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 250 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 251 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 252 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 253 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 254 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 255 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 256 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class TripleDetect(nn.Module):
|
| 260 |
+
# YOLO Detect head for detection models
|
| 261 |
+
dynamic = False # force grid reconstruction
|
| 262 |
+
export = False # export mode
|
| 263 |
+
shape = None
|
| 264 |
+
anchors = torch.empty(0) # init
|
| 265 |
+
strides = torch.empty(0) # init
|
| 266 |
+
|
| 267 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 268 |
+
super().__init__()
|
| 269 |
+
self.nc = nc # number of classes
|
| 270 |
+
self.nl = len(ch) // 3 # number of detection layers
|
| 271 |
+
self.reg_max = 16
|
| 272 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 273 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 274 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 275 |
+
|
| 276 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 277 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 278 |
+
c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
| 279 |
+
self.cv2 = nn.ModuleList(
|
| 280 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
| 281 |
+
self.cv3 = nn.ModuleList(
|
| 282 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 283 |
+
self.cv4 = nn.ModuleList(
|
| 284 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
|
| 285 |
+
self.cv5 = nn.ModuleList(
|
| 286 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
| 287 |
+
self.cv6 = nn.ModuleList(
|
| 288 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 289 |
+
self.cv7 = nn.ModuleList(
|
| 290 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 291 |
+
self.dfl = DFL(self.reg_max)
|
| 292 |
+
self.dfl2 = DFL(self.reg_max)
|
| 293 |
+
self.dfl3 = DFL(self.reg_max)
|
| 294 |
+
|
| 295 |
+
def forward(self, x):
|
| 296 |
+
shape = x[0].shape # BCHW
|
| 297 |
+
d1 = []
|
| 298 |
+
d2 = []
|
| 299 |
+
d3 = []
|
| 300 |
+
for i in range(self.nl):
|
| 301 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 302 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 303 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
| 304 |
+
if self.training:
|
| 305 |
+
return [d1, d2, d3]
|
| 306 |
+
elif self.dynamic or self.shape != shape:
|
| 307 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 308 |
+
self.shape = shape
|
| 309 |
+
|
| 310 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 311 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 312 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 313 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 314 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
| 315 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 316 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
| 317 |
+
return y if self.export else (y, [d1, d2, d3])
|
| 318 |
+
|
| 319 |
+
def bias_init(self):
|
| 320 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 321 |
+
m = self # self.model[-1] # Detect() module
|
| 322 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 323 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 324 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 325 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 326 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 327 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 328 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 329 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 330 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
| 331 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 332 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
class TripleDDetect(nn.Module):
|
| 336 |
+
# YOLO Detect head for detection models
|
| 337 |
+
dynamic = False # force grid reconstruction
|
| 338 |
+
export = False # export mode
|
| 339 |
+
shape = None
|
| 340 |
+
anchors = torch.empty(0) # init
|
| 341 |
+
strides = torch.empty(0) # init
|
| 342 |
+
|
| 343 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 344 |
+
super().__init__()
|
| 345 |
+
self.nc = nc # number of classes
|
| 346 |
+
self.nl = len(ch) // 3 # number of detection layers
|
| 347 |
+
self.reg_max = 16
|
| 348 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 349 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 350 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 351 |
+
|
| 352 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
|
| 353 |
+
max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 354 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
|
| 355 |
+
max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 356 |
+
c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
|
| 357 |
+
max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
| 358 |
+
self.cv2 = nn.ModuleList(
|
| 359 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
|
| 360 |
+
nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
| 361 |
+
self.cv3 = nn.ModuleList(
|
| 362 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 363 |
+
self.cv4 = nn.ModuleList(
|
| 364 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
|
| 365 |
+
nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
|
| 366 |
+
self.cv5 = nn.ModuleList(
|
| 367 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
| 368 |
+
self.cv6 = nn.ModuleList(
|
| 369 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
|
| 370 |
+
nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
|
| 371 |
+
self.cv7 = nn.ModuleList(
|
| 372 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 373 |
+
self.dfl = DFL(self.reg_max)
|
| 374 |
+
self.dfl2 = DFL(self.reg_max)
|
| 375 |
+
self.dfl3 = DFL(self.reg_max)
|
| 376 |
+
|
| 377 |
+
def forward(self, x):
|
| 378 |
+
shape = x[0].shape # BCHW
|
| 379 |
+
d1 = []
|
| 380 |
+
d2 = []
|
| 381 |
+
d3 = []
|
| 382 |
+
for i in range(self.nl):
|
| 383 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 384 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 385 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
| 386 |
+
if self.training:
|
| 387 |
+
return [d1, d2, d3]
|
| 388 |
+
elif self.dynamic or self.shape != shape:
|
| 389 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 390 |
+
self.shape = shape
|
| 391 |
+
|
| 392 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 393 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 394 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 395 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 396 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
| 397 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 398 |
+
#y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
| 399 |
+
#return y if self.export else (y, [d1, d2, d3])
|
| 400 |
+
y = torch.cat((dbox3, cls3.sigmoid()), 1)
|
| 401 |
+
return y if self.export else (y, d3)
|
| 402 |
+
|
| 403 |
+
def bias_init(self):
|
| 404 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 405 |
+
m = self # self.model[-1] # Detect() module
|
| 406 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 407 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 408 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 409 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 410 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 411 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 412 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 413 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 414 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
| 415 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 416 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
class Segment(Detect):
|
| 420 |
+
# YOLO Segment head for segmentation models
|
| 421 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
| 422 |
+
super().__init__(nc, ch, inplace)
|
| 423 |
+
self.nm = nm # number of masks
|
| 424 |
+
self.npr = npr # number of protos
|
| 425 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
| 426 |
+
self.detect = Detect.forward
|
| 427 |
+
|
| 428 |
+
c4 = max(ch[0] // 4, self.nm)
|
| 429 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
| 430 |
+
|
| 431 |
+
def forward(self, x):
|
| 432 |
+
p = self.proto(x[0])
|
| 433 |
+
bs = p.shape[0]
|
| 434 |
+
|
| 435 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
| 436 |
+
x = self.detect(self, x)
|
| 437 |
+
if self.training:
|
| 438 |
+
return x, mc, p
|
| 439 |
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class DSegment(DDetect):
|
| 443 |
+
# YOLO Segment head for segmentation models
|
| 444 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
| 445 |
+
super().__init__(nc, ch[:-1], inplace)
|
| 446 |
+
self.nl = len(ch)-1
|
| 447 |
+
self.nm = nm # number of masks
|
| 448 |
+
self.npr = npr # number of protos
|
| 449 |
+
self.proto = Conv(ch[-1], self.nm, 1) # protos
|
| 450 |
+
self.detect = DDetect.forward
|
| 451 |
+
|
| 452 |
+
c4 = max(ch[0] // 4, self.nm)
|
| 453 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch[:-1])
|
| 454 |
+
|
| 455 |
+
def forward(self, x):
|
| 456 |
+
p = self.proto(x[-1])
|
| 457 |
+
bs = p.shape[0]
|
| 458 |
+
|
| 459 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
| 460 |
+
x = self.detect(self, x[:-1])
|
| 461 |
+
if self.training:
|
| 462 |
+
return x, mc, p
|
| 463 |
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
class DualDSegment(DualDDetect):
|
| 467 |
+
# YOLO Segment head for segmentation models
|
| 468 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
| 469 |
+
super().__init__(nc, ch[:-2], inplace)
|
| 470 |
+
self.nl = (len(ch)-2) // 2
|
| 471 |
+
self.nm = nm # number of masks
|
| 472 |
+
self.npr = npr # number of protos
|
| 473 |
+
self.proto = Conv(ch[-2], self.nm, 1) # protos
|
| 474 |
+
self.proto2 = Conv(ch[-1], self.nm, 1) # protos
|
| 475 |
+
self.detect = DualDDetect.forward
|
| 476 |
+
|
| 477 |
+
c6 = max(ch[0] // 4, self.nm)
|
| 478 |
+
c7 = max(ch[self.nl] // 4, self.nm)
|
| 479 |
+
self.cv6 = nn.ModuleList(nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, self.nm, 1)) for x in ch[:self.nl])
|
| 480 |
+
self.cv7 = nn.ModuleList(nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nm, 1)) for x in ch[self.nl:self.nl*2])
|
| 481 |
+
|
| 482 |
+
def forward(self, x):
|
| 483 |
+
p = [self.proto(x[-2]), self.proto2(x[-1])]
|
| 484 |
+
bs = p[0].shape[0]
|
| 485 |
+
|
| 486 |
+
mc = [torch.cat([self.cv6[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2),
|
| 487 |
+
torch.cat([self.cv7[i](x[self.nl+i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)] # mask coefficients
|
| 488 |
+
d = self.detect(self, x[:-2])
|
| 489 |
+
if self.training:
|
| 490 |
+
return d, mc, p
|
| 491 |
+
return (torch.cat([d[0][1], mc[1]], 1), (d[1][1], mc[1], p[1]))
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
class Panoptic(Detect):
|
| 495 |
+
# YOLO Panoptic head for panoptic segmentation models
|
| 496 |
+
def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
|
| 497 |
+
super().__init__(nc, ch, inplace)
|
| 498 |
+
self.sem_nc = sem_nc
|
| 499 |
+
self.nm = nm # number of masks
|
| 500 |
+
self.npr = npr # number of protos
|
| 501 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
| 502 |
+
self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
|
| 503 |
+
self.detect = Detect.forward
|
| 504 |
+
|
| 505 |
+
c4 = max(ch[0] // 4, self.nm)
|
| 506 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def forward(self, x):
|
| 510 |
+
p = self.proto(x[0])
|
| 511 |
+
s = self.uconv(x[0])
|
| 512 |
+
bs = p.shape[0]
|
| 513 |
+
|
| 514 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
| 515 |
+
x = self.detect(self, x)
|
| 516 |
+
if self.training:
|
| 517 |
+
return x, mc, p, s
|
| 518 |
+
return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
class BaseModel(nn.Module):
|
| 522 |
+
# YOLO base model
|
| 523 |
+
def forward(self, x, profile=False, visualize=False):
|
| 524 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
| 525 |
+
|
| 526 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
| 527 |
+
y, dt = [], [] # outputs
|
| 528 |
+
for m in self.model:
|
| 529 |
+
if m.f != -1: # if not from previous layer
|
| 530 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
| 531 |
+
if profile:
|
| 532 |
+
self._profile_one_layer(m, x, dt)
|
| 533 |
+
x = m(x) # run
|
| 534 |
+
y.append(x if m.i in self.save else None) # save output
|
| 535 |
+
if visualize:
|
| 536 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
| 537 |
+
return x
|
| 538 |
+
|
| 539 |
+
def _profile_one_layer(self, m, x, dt):
|
| 540 |
+
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
| 541 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
| 542 |
+
t = time_sync()
|
| 543 |
+
for _ in range(10):
|
| 544 |
+
m(x.copy() if c else x)
|
| 545 |
+
dt.append((time_sync() - t) * 100)
|
| 546 |
+
if m == self.model[0]:
|
| 547 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
| 548 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
| 549 |
+
if c:
|
| 550 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
| 551 |
+
|
| 552 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
| 553 |
+
LOGGER.info('Fusing layers... ')
|
| 554 |
+
for m in self.model.modules():
|
| 555 |
+
if isinstance(m, (RepConvN)) and hasattr(m, 'fuse_convs'):
|
| 556 |
+
m.fuse_convs()
|
| 557 |
+
m.forward = m.forward_fuse # update forward
|
| 558 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
| 559 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
| 560 |
+
delattr(m, 'bn') # remove batchnorm
|
| 561 |
+
m.forward = m.forward_fuse # update forward
|
| 562 |
+
self.info()
|
| 563 |
+
return self
|
| 564 |
+
|
| 565 |
+
def info(self, verbose=False, img_size=640): # print model information
|
| 566 |
+
model_info(self, verbose, img_size)
|
| 567 |
+
|
| 568 |
+
def _apply(self, fn):
|
| 569 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
| 570 |
+
self = super()._apply(fn)
|
| 571 |
+
m = self.model[-1] # Detect()
|
| 572 |
+
if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic)):
|
| 573 |
+
m.stride = fn(m.stride)
|
| 574 |
+
m.anchors = fn(m.anchors)
|
| 575 |
+
m.strides = fn(m.strides)
|
| 576 |
+
# m.grid = list(map(fn, m.grid))
|
| 577 |
+
return self
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
class DetectionModel(BaseModel):
|
| 581 |
+
# YOLO detection model
|
| 582 |
+
def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
| 583 |
+
super().__init__()
|
| 584 |
+
if isinstance(cfg, dict):
|
| 585 |
+
self.yaml = cfg # model dict
|
| 586 |
+
else: # is *.yaml
|
| 587 |
+
import yaml # for torch hub
|
| 588 |
+
self.yaml_file = Path(cfg).name
|
| 589 |
+
with open(cfg, encoding='ascii', errors='ignore') as f:
|
| 590 |
+
self.yaml = yaml.safe_load(f) # model dict
|
| 591 |
+
|
| 592 |
+
# Define model
|
| 593 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
| 594 |
+
if nc and nc != self.yaml['nc']:
|
| 595 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
| 596 |
+
self.yaml['nc'] = nc # override yaml value
|
| 597 |
+
if anchors:
|
| 598 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
| 599 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
| 600 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
| 601 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
| 602 |
+
self.inplace = self.yaml.get('inplace', True)
|
| 603 |
+
|
| 604 |
+
# Build strides, anchors
|
| 605 |
+
m = self.model[-1] # Detect()
|
| 606 |
+
if isinstance(m, (Detect, DDetect, Segment, DSegment, Panoptic)):
|
| 607 |
+
s = 256 # 2x min stride
|
| 608 |
+
m.inplace = self.inplace
|
| 609 |
+
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, DSegment, Panoptic)) else self.forward(x)
|
| 610 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
| 611 |
+
# check_anchor_order(m)
|
| 612 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
| 613 |
+
self.stride = m.stride
|
| 614 |
+
m.bias_init() # only run once
|
| 615 |
+
if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect, DualDSegment)):
|
| 616 |
+
s = 256 # 2x min stride
|
| 617 |
+
m.inplace = self.inplace
|
| 618 |
+
forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualDSegment)) else self.forward(x)[0]
|
| 619 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
| 620 |
+
# check_anchor_order(m)
|
| 621 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
| 622 |
+
self.stride = m.stride
|
| 623 |
+
m.bias_init() # only run once
|
| 624 |
+
|
| 625 |
+
# Init weights, biases
|
| 626 |
+
initialize_weights(self)
|
| 627 |
+
self.info()
|
| 628 |
+
LOGGER.info('')
|
| 629 |
+
|
| 630 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
| 631 |
+
if augment:
|
| 632 |
+
return self._forward_augment(x) # augmented inference, None
|
| 633 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
| 634 |
+
|
| 635 |
+
def _forward_augment(self, x):
|
| 636 |
+
img_size = x.shape[-2:] # height, width
|
| 637 |
+
s = [1, 0.83, 0.67] # scales
|
| 638 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
| 639 |
+
y = [] # outputs
|
| 640 |
+
for si, fi in zip(s, f):
|
| 641 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
| 642 |
+
yi = self._forward_once(xi)[0] # forward
|
| 643 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
| 644 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
| 645 |
+
y.append(yi)
|
| 646 |
+
y = self._clip_augmented(y) # clip augmented tails
|
| 647 |
+
return torch.cat(y, 1), None # augmented inference, train
|
| 648 |
+
|
| 649 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
| 650 |
+
# de-scale predictions following augmented inference (inverse operation)
|
| 651 |
+
if self.inplace:
|
| 652 |
+
p[..., :4] /= scale # de-scale
|
| 653 |
+
if flips == 2:
|
| 654 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
| 655 |
+
elif flips == 3:
|
| 656 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
| 657 |
+
else:
|
| 658 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
| 659 |
+
if flips == 2:
|
| 660 |
+
y = img_size[0] - y # de-flip ud
|
| 661 |
+
elif flips == 3:
|
| 662 |
+
x = img_size[1] - x # de-flip lr
|
| 663 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
| 664 |
+
return p
|
| 665 |
+
|
| 666 |
+
def _clip_augmented(self, y):
|
| 667 |
+
# Clip YOLO augmented inference tails
|
| 668 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
| 669 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
| 670 |
+
e = 1 # exclude layer count
|
| 671 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
| 672 |
+
y[0] = y[0][:, :-i] # large
|
| 673 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
| 674 |
+
y[-1] = y[-1][:, i:] # small
|
| 675 |
+
return y
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
class SegmentationModel(DetectionModel):
|
| 682 |
+
# YOLO segmentation model
|
| 683 |
+
def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
|
| 684 |
+
super().__init__(cfg, ch, nc, anchors)
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
class ClassificationModel(BaseModel):
|
| 688 |
+
# YOLO classification model
|
| 689 |
+
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
| 690 |
+
super().__init__()
|
| 691 |
+
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
| 692 |
+
|
| 693 |
+
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
| 694 |
+
# Create a YOLO classification model from a YOLO detection model
|
| 695 |
+
if isinstance(model, DetectMultiBackend):
|
| 696 |
+
model = model.model # unwrap DetectMultiBackend
|
| 697 |
+
model.model = model.model[:cutoff] # backbone
|
| 698 |
+
m = model.model[-1] # last layer
|
| 699 |
+
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
| 700 |
+
c = Classify(ch, nc) # Classify()
|
| 701 |
+
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
| 702 |
+
model.model[-1] = c # replace
|
| 703 |
+
self.model = model.model
|
| 704 |
+
self.stride = model.stride
|
| 705 |
+
self.save = []
|
| 706 |
+
self.nc = nc
|
| 707 |
+
|
| 708 |
+
def _from_yaml(self, cfg):
|
| 709 |
+
# Create a YOLO classification model from a *.yaml file
|
| 710 |
+
self.model = None
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
| 714 |
+
# Parse a YOLO model.yaml dictionary
|
| 715 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
| 716 |
+
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
| 717 |
+
if act:
|
| 718 |
+
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
| 719 |
+
RepConvN.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
| 720 |
+
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
| 721 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
| 722 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
| 723 |
+
|
| 724 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
| 725 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
| 726 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
| 727 |
+
for j, a in enumerate(args):
|
| 728 |
+
with contextlib.suppress(NameError):
|
| 729 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
| 730 |
+
|
| 731 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
| 732 |
+
if m in {
|
| 733 |
+
Conv, AConv, ConvTranspose,
|
| 734 |
+
Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
|
| 735 |
+
RepNCSPELAN4, SPPELAN}:
|
| 736 |
+
c1, c2 = ch[f], args[0]
|
| 737 |
+
if c2 != no: # if not output
|
| 738 |
+
c2 = make_divisible(c2 * gw, 8)
|
| 739 |
+
|
| 740 |
+
args = [c1, c2, *args[1:]]
|
| 741 |
+
if m in {BottleneckCSP, SPPCSPC}:
|
| 742 |
+
args.insert(2, n) # number of repeats
|
| 743 |
+
n = 1
|
| 744 |
+
elif m is nn.BatchNorm2d:
|
| 745 |
+
args = [ch[f]]
|
| 746 |
+
elif m is Concat:
|
| 747 |
+
c2 = sum(ch[x] for x in f)
|
| 748 |
+
elif m is Shortcut:
|
| 749 |
+
c2 = ch[f[0]]
|
| 750 |
+
elif m is ReOrg:
|
| 751 |
+
c2 = ch[f] * 4
|
| 752 |
+
elif m is CBLinear:
|
| 753 |
+
c2 = args[0]
|
| 754 |
+
c1 = ch[f]
|
| 755 |
+
args = [c1, c2, *args[1:]]
|
| 756 |
+
elif m is CBFuse:
|
| 757 |
+
c2 = ch[f[-1]]
|
| 758 |
+
# TODO: channel, gw, gd
|
| 759 |
+
elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic}:
|
| 760 |
+
args.append([ch[x] for x in f])
|
| 761 |
+
# if isinstance(args[1], int): # number of anchors
|
| 762 |
+
# args[1] = [list(range(args[1] * 2))] * len(f)
|
| 763 |
+
if m in {Segment, DSegment, DualDSegment, Panoptic}:
|
| 764 |
+
args[2] = make_divisible(args[2] * gw, 8)
|
| 765 |
+
elif m is Contract:
|
| 766 |
+
c2 = ch[f] * args[0] ** 2
|
| 767 |
+
elif m is Expand:
|
| 768 |
+
c2 = ch[f] // args[0] ** 2
|
| 769 |
+
else:
|
| 770 |
+
c2 = ch[f]
|
| 771 |
+
|
| 772 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
| 773 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
| 774 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
| 775 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
| 776 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
| 777 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
| 778 |
+
layers.append(m_)
|
| 779 |
+
if i == 0:
|
| 780 |
+
ch = []
|
| 781 |
+
ch.append(c2)
|
| 782 |
+
return nn.Sequential(*layers), sorted(save)
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
if __name__ == '__main__':
|
| 786 |
+
parser = argparse.ArgumentParser()
|
| 787 |
+
parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
|
| 788 |
+
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
| 789 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 790 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
| 791 |
+
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
| 792 |
+
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
| 793 |
+
opt = parser.parse_args()
|
| 794 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
| 795 |
+
print_args(vars(opt))
|
| 796 |
+
device = select_device(opt.device)
|
| 797 |
+
|
| 798 |
+
# Create model
|
| 799 |
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
| 800 |
+
model = Model(opt.cfg).to(device)
|
| 801 |
+
model.eval()
|
| 802 |
+
|
| 803 |
+
# Options
|
| 804 |
+
if opt.line_profile: # profile layer by layer
|
| 805 |
+
model(im, profile=True)
|
| 806 |
+
|
| 807 |
+
elif opt.profile: # profile forward-backward
|
| 808 |
+
results = profile(input=im, ops=[model], n=3)
|
| 809 |
+
|
| 810 |
+
elif opt.test: # test all models
|
| 811 |
+
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
| 812 |
+
try:
|
| 813 |
+
_ = Model(cfg)
|
| 814 |
+
except Exception as e:
|
| 815 |
+
print(f'Error in {cfg}: {e}')
|
| 816 |
+
|
| 817 |
+
else: # report fused model summary
|
| 818 |
+
model.fuse()
|