Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -4,6 +4,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM 
     | 
|
| 4 | 
         
             
            import gradio as gr
         
     | 
| 5 | 
         
             
            import pandas as pd
         
     | 
| 6 | 
         
             
            import math
         
     | 
| 
         | 
|
| 7 | 
         | 
| 8 | 
         
             
            # Load model and tokenizer
         
     | 
| 9 | 
         
             
            model_ids = {
         
     | 
| 
         @@ -21,9 +22,22 @@ models = { 
     | 
|
| 21 | 
         
             
                for name, path in model_ids.items()
         
     | 
| 22 | 
         
             
            }
         
     | 
| 23 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 24 | 
         
             
            # Main function: compute token-wise log probabilities and top-k predictions
         
     | 
| 25 | 
         
             
            @torch.no_grad()
         
     | 
| 26 | 
         
             
            def compare_models(text, top_k=5):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 27 | 
         
             
                results = {}
         
     | 
| 28 | 
         | 
| 29 | 
         
             
                for model_name in model_ids:
         
     | 
| 
         @@ -48,59 +62,248 @@ def compare_models(text, top_k=5): 
     | 
|
| 48 | 
         | 
| 49 | 
         
             
                    # Generate top-k predictions for each position (up to first 20 tokens)
         
     | 
| 50 | 
         
             
                    topk_list = []
         
     | 
| 
         | 
|
| 51 | 
         
             
                    for i in range(min(20, shift_logits.shape[1])):
         
     | 
| 52 | 
         
             
                        topk = torch.topk(log_probs[0, i], k=top_k)
         
     | 
| 53 | 
         
             
                        topk_ids = topk.indices.tolist()
         
     | 
| 54 | 
         
             
                        topk_scores = topk.values.tolist()
         
     | 
| 55 | 
         
             
                        topk_tokens = tokenizer.convert_ids_to_tokens(topk_ids)
         
     | 
| 56 | 
         
            -
                        topk_probs = [ 
     | 
| 57 | 
         
            -
                         
     | 
| 58 | 
         
            -
                         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 59 | 
         | 
| 60 | 
         
             
                    # Prepare dataframe for display
         
     | 
| 61 | 
         
             
                    df = pd.DataFrame({
         
     | 
| 62 | 
         
             
                        "Token": tokens[:20],
         
     | 
| 63 | 
         
            -
                        "LogProb": [ 
     | 
| 
         | 
|
| 64 | 
         
             
                        f"Top-{top_k} Predictions": topk_list
         
     | 
| 65 | 
         
             
                    })
         
     | 
| 66 | 
         | 
| 67 | 
         
             
                    results[model_name] = {
         
     | 
| 68 | 
         
             
                        "df": df,
         
     | 
| 69 | 
         
            -
                        "total_log_prob": total_log_prob
         
     | 
| 
         | 
|
| 
         | 
|
| 70 | 
         
             
                    }
         
     | 
| 71 | 
         | 
| 72 | 
         
            -
                #  
     | 
| 73 | 
         
            -
                 
     | 
| 74 | 
         
             
                    "Token": results["ERNIE-4.5-PT"]["df"]["Token"],
         
     | 
| 75 | 
         
            -
                    "ERNIE-4.5-PT 
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 79 | 
         
             
                })
         
     | 
| 80 | 
         | 
| 81 | 
         
            -
                #  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 82 | 
         
             
                summary = (
         
     | 
| 83 | 
         
            -
                    f" 
     | 
| 84 | 
         
            -
                    f" 
     | 
| 85 | 
         
            -
                    f"- ERNIE-4.5- 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 86 | 
         
             
                )
         
     | 
| 87 | 
         | 
| 88 | 
         
            -
                return  
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
            #  
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
                 
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                 
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
                 
     | 
| 101 | 
         
            -
                 
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 104 | 
         | 
| 105 | 
         
             
            if __name__ == "__main__":
         
     | 
| 106 | 
         
            -
                demo.launch()
         
     | 
| 
         | 
|
| 4 | 
         
             
            import gradio as gr
         
     | 
| 5 | 
         
             
            import pandas as pd
         
     | 
| 6 | 
         
             
            import math
         
     | 
| 7 | 
         
            +
            from plotly import graph_objects as go
         
     | 
| 8 | 
         | 
| 9 | 
         
             
            # Load model and tokenizer
         
     | 
| 10 | 
         
             
            model_ids = {
         
     | 
| 
         | 
|
| 22 | 
         
             
                for name, path in model_ids.items()
         
     | 
| 23 | 
         
             
            }
         
     | 
| 24 | 
         | 
| 25 | 
         
            +
            # Helper function to format probability
         
     | 
| 26 | 
         
            +
            def format_prob(prob):
         
     | 
| 27 | 
         
            +
                """Format probability as percentage with 1 decimal place"""
         
     | 
| 28 | 
         
            +
                return f"{prob*100:.1f}%"
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            # Helper function to format log probability
         
     | 
| 31 | 
         
            +
            def format_log_prob(log_prob):
         
     | 
| 32 | 
         
            +
                """Format log probability with color coding"""
         
     | 
| 33 | 
         
            +
                return f"{log_prob:.3f}"
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
             
            # Main function: compute token-wise log probabilities and top-k predictions
         
     | 
| 36 | 
         
             
            @torch.no_grad()
         
     | 
| 37 | 
         
             
            def compare_models(text, top_k=5):
         
     | 
| 38 | 
         
            +
                if not text.strip():
         
     | 
| 39 | 
         
            +
                    return None, "β οΈ Please enter some text to analyze"
         
     | 
| 40 | 
         
            +
                
         
     | 
| 41 | 
         
             
                results = {}
         
     | 
| 42 | 
         | 
| 43 | 
         
             
                for model_name in model_ids:
         
     | 
| 
         | 
|
| 62 | 
         | 
| 63 | 
         
             
                    # Generate top-k predictions for each position (up to first 20 tokens)
         
     | 
| 64 | 
         
             
                    topk_list = []
         
     | 
| 65 | 
         
            +
                    confidence_list = []
         
     | 
| 66 | 
         
             
                    for i in range(min(20, shift_logits.shape[1])):
         
     | 
| 67 | 
         
             
                        topk = torch.topk(log_probs[0, i], k=top_k)
         
     | 
| 68 | 
         
             
                        topk_ids = topk.indices.tolist()
         
     | 
| 69 | 
         
             
                        topk_scores = topk.values.tolist()
         
     | 
| 70 | 
         
             
                        topk_tokens = tokenizer.convert_ids_to_tokens(topk_ids)
         
     | 
| 71 | 
         
            +
                        topk_probs = [math.exp(s) for s in topk_scores]
         
     | 
| 72 | 
         
            +
                        
         
     | 
| 73 | 
         
            +
                        # Format top-k predictions with probabilities
         
     | 
| 74 | 
         
            +
                        topk_formatted = [f"{tok} ({format_prob(p)})" for tok, p in zip(topk_tokens, topk_probs)]
         
     | 
| 75 | 
         
            +
                        topk_list.append(", ".join(topk_formatted))
         
     | 
| 76 | 
         
            +
                        
         
     | 
| 77 | 
         
            +
                        # Calculate confidence (probability of actual token)
         
     | 
| 78 | 
         
            +
                        actual_token_prob = math.exp(token_log_probs[0, i].item())
         
     | 
| 79 | 
         
            +
                        confidence_list.append(actual_token_prob)
         
     | 
| 80 | 
         | 
| 81 | 
         
             
                    # Prepare dataframe for display
         
     | 
| 82 | 
         
             
                    df = pd.DataFrame({
         
     | 
| 83 | 
         
             
                        "Token": tokens[:20],
         
     | 
| 84 | 
         
            +
                        "LogProb": [format_log_prob(float(x)) for x in token_log_probs[0][:20]],
         
     | 
| 85 | 
         
            +
                        "Confidence": [format_prob(x) for x in confidence_list[:20]],
         
     | 
| 86 | 
         
             
                        f"Top-{top_k} Predictions": topk_list
         
     | 
| 87 | 
         
             
                    })
         
     | 
| 88 | 
         | 
| 89 | 
         
             
                    results[model_name] = {
         
     | 
| 90 | 
         
             
                        "df": df,
         
     | 
| 91 | 
         
            +
                        "total_log_prob": total_log_prob,
         
     | 
| 92 | 
         
            +
                        "tokens": tokens[:20],
         
     | 
| 93 | 
         
            +
                        "confidences": confidence_list[:20]
         
     | 
| 94 | 
         
             
                    }
         
     | 
| 95 | 
         | 
| 96 | 
         
            +
                # Create comparison dataframe
         
     | 
| 97 | 
         
            +
                comparison_df = pd.DataFrame({
         
     | 
| 98 | 
         
             
                    "Token": results["ERNIE-4.5-PT"]["df"]["Token"],
         
     | 
| 99 | 
         
            +
                    "ERNIE-4.5-PT": {
         
     | 
| 100 | 
         
            +
                        "LogProb": results["ERNIE-4.5-PT"]["df"]["LogProb"],
         
     | 
| 101 | 
         
            +
                        "Confidence": results["ERNIE-4.5-PT"]["df"]["Confidence"],
         
     | 
| 102 | 
         
            +
                        "Top-k": results["ERNIE-4.5-PT"]["df"][f"Top-{top_k} Predictions"]
         
     | 
| 103 | 
         
            +
                    },
         
     | 
| 104 | 
         
            +
                    "ERNIE-4.5-Base-PT": {
         
     | 
| 105 | 
         
            +
                        "LogProb": results["ERNIE-4.5-Base-PT"]["df"]["LogProb"],
         
     | 
| 106 | 
         
            +
                        "Confidence": results["ERNIE-4.5-Base-PT"]["df"]["Confidence"],
         
     | 
| 107 | 
         
            +
                        "Top-k": results["ERNIE-4.5-Base-PT"]["df"][f"Top-{top_k} Predictions"]
         
     | 
| 108 | 
         
            +
                    }
         
     | 
| 109 | 
         
             
                })
         
     | 
| 110 | 
         | 
| 111 | 
         
            +
                # Create visualization
         
     | 
| 112 | 
         
            +
                fig = go.Figure()
         
     | 
| 113 | 
         
            +
                
         
     | 
| 114 | 
         
            +
                # Add confidence bars for both models
         
     | 
| 115 | 
         
            +
                fig.add_trace(go.Bar(
         
     | 
| 116 | 
         
            +
                    name='ERNIE-4.5-PT',
         
     | 
| 117 | 
         
            +
                    x=results["ERNIE-4.5-PT"]["tokens"],
         
     | 
| 118 | 
         
            +
                    y=results["ERNIE-4.5-PT"]["confidences"],
         
     | 
| 119 | 
         
            +
                    marker_color='royalblue'
         
     | 
| 120 | 
         
            +
                ))
         
     | 
| 121 | 
         
            +
                
         
     | 
| 122 | 
         
            +
                fig.add_trace(go.Bar(
         
     | 
| 123 | 
         
            +
                    name='ERNIE-4.5-Base-PT',
         
     | 
| 124 | 
         
            +
                    x=results["ERNIE-4.5-Base-PT"]["tokens"],
         
     | 
| 125 | 
         
            +
                    y=results["ERNIE-4.5-Base-PT"]["confidences"],
         
     | 
| 126 | 
         
            +
                    marker_color='lightseagreen'
         
     | 
| 127 | 
         
            +
                ))
         
     | 
| 128 | 
         
            +
                
         
     | 
| 129 | 
         
            +
                fig.update_layout(
         
     | 
| 130 | 
         
            +
                    title='Model Confidence Comparison',
         
     | 
| 131 | 
         
            +
                    xaxis_title='Token',
         
     | 
| 132 | 
         
            +
                    yaxis_title='Confidence (Probability)',
         
     | 
| 133 | 
         
            +
                    barmode='group',
         
     | 
| 134 | 
         
            +
                    yaxis=dict(tickformat='.0%', range=[0, 1]),
         
     | 
| 135 | 
         
            +
                    legend=dict(
         
     | 
| 136 | 
         
            +
                        orientation="h",
         
     | 
| 137 | 
         
            +
                        yanchor="bottom",
         
     | 
| 138 | 
         
            +
                        y=1.02,
         
     | 
| 139 | 
         
            +
                        xanchor="right",
         
     | 
| 140 | 
         
            +
                        x=1
         
     | 
| 141 | 
         
            +
                    )
         
     | 
| 142 | 
         
            +
                )
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                # Create summary
         
     | 
| 145 | 
         
            +
                pt_logprob = results['ERNIE-4.5-PT']['total_log_prob']
         
     | 
| 146 | 
         
            +
                base_logprob = results['ERNIE-4.5-Base-PT']['total_log_prob']
         
     | 
| 147 | 
         
            +
                
         
     | 
| 148 | 
         
            +
                # Determine which model has higher confidence
         
     | 
| 149 | 
         
            +
                if pt_logprob > base_logprob:
         
     | 
| 150 | 
         
            +
                    better_model = "ERNIE-4.5-PT"
         
     | 
| 151 | 
         
            +
                    difference = pt_logprob - base_logprob
         
     | 
| 152 | 
         
            +
                else:
         
     | 
| 153 | 
         
            +
                    better_model = "ERNIE-4.5-Base-PT"
         
     | 
| 154 | 
         
            +
                    difference = base_logprob - pt_logprob
         
     | 
| 155 | 
         
            +
                
         
     | 
| 156 | 
         
             
                summary = (
         
     | 
| 157 | 
         
            +
                    f"π **Model Comparison Summary**\n\n"
         
     | 
| 158 | 
         
            +
                    f"**Total Log Probability**:\n"
         
     | 
| 159 | 
         
            +
                    f"- ERNIE-4.5-PT: {pt_logprob:.3f}\n"
         
     | 
| 160 | 
         
            +
                    f"- ERNIE-4.5-Base-PT: {base_logprob:.3f}\n\n"
         
     | 
| 161 | 
         
            +
                    f"π **Higher Confidence Model**: {better_model}\n"
         
     | 
| 162 | 
         
            +
                    f"Difference: {difference:.3f} ({'+' if better_model == 'ERNIE-4.5-PT' else '-'}{difference:.3f})\n\n"
         
     | 
| 163 | 
         
            +
                    f"**What this means**:\n"
         
     | 
| 164 | 
         
            +
                    f"- Log probability closer to 0 (less negative) indicates higher model confidence\n"
         
     | 
| 165 | 
         
            +
                    f"- The {better_model} model is more confident in predicting your input text\n"
         
     | 
| 166 | 
         
            +
                    f"- Confidence per token is shown in the table and chart below"
         
     | 
| 167 | 
         
             
                )
         
     | 
| 168 | 
         | 
| 169 | 
         
            +
                return comparison_df, summary, fig
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            # Create custom CSS for better styling
         
     | 
| 172 | 
         
            +
            css = """
         
     | 
| 173 | 
         
            +
            .main-container {
         
     | 
| 174 | 
         
            +
                max-width: 1200px;
         
     | 
| 175 | 
         
            +
                margin: 0 auto;
         
     | 
| 176 | 
         
            +
            }
         
     | 
| 177 | 
         
            +
            .dataframe-container {
         
     | 
| 178 | 
         
            +
                margin: 20px 0;
         
     | 
| 179 | 
         
            +
            }
         
     | 
| 180 | 
         
            +
            .confidence-chart {
         
     | 
| 181 | 
         
            +
                margin: 20px 0;
         
     | 
| 182 | 
         
            +
                height: 400px;
         
     | 
| 183 | 
         
            +
            }
         
     | 
| 184 | 
         
            +
            .summary-box {
         
     | 
| 185 | 
         
            +
                background-color: #f8f9fa;
         
     | 
| 186 | 
         
            +
                border-left: 4px solid #4285f4;
         
     | 
| 187 | 
         
            +
                padding: 15px;
         
     | 
| 188 | 
         
            +
                border-radius: 4px;
         
     | 
| 189 | 
         
            +
                margin: 20px 0;
         
     | 
| 190 | 
         
            +
            }
         
     | 
| 191 | 
         
            +
            .model-header {
         
     | 
| 192 | 
         
            +
                font-weight: bold;
         
     | 
| 193 | 
         
            +
                color: #1a73e8;
         
     | 
| 194 | 
         
            +
                margin-top: 10px;
         
     | 
| 195 | 
         
            +
            }
         
     | 
| 196 | 
         
            +
            .token-cell {
         
     | 
| 197 | 
         
            +
                font-family: monospace;
         
     | 
| 198 | 
         
            +
                background-color: #f1f3f4;
         
     | 
| 199 | 
         
            +
                padding: 4px 8px;
         
     | 
| 200 | 
         
            +
                border-radius: 3px;
         
     | 
| 201 | 
         
            +
            }
         
     | 
| 202 | 
         
            +
            .confidence-high {
         
     | 
| 203 | 
         
            +
                color: #0f9d58;
         
     | 
| 204 | 
         
            +
                font-weight: bold;
         
     | 
| 205 | 
         
            +
            }
         
     | 
| 206 | 
         
            +
            .confidence-medium {
         
     | 
| 207 | 
         
            +
                color: #f4b400;
         
     | 
| 208 | 
         
            +
            }
         
     | 
| 209 | 
         
            +
            .confidence-low {
         
     | 
| 210 | 
         
            +
                color: #db4437;
         
     | 
| 211 | 
         
            +
            }
         
     | 
| 212 | 
         
            +
            """
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
            # Gradio interface with improved layout
         
     | 
| 215 | 
         
            +
            with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
         
     | 
| 216 | 
         
            +
                gr.Markdown(
         
     | 
| 217 | 
         
            +
                    """
         
     | 
| 218 | 
         
            +
                    # π ERNIE 4.5 Model Comparison Tool
         
     | 
| 219 | 
         
            +
                    
         
     | 
| 220 | 
         
            +
                    Compare how different ERNIE models process your text with detailed token-level analysis.
         
     | 
| 221 | 
         
            +
                    
         
     | 
| 222 | 
         
            +
                    ## What this tool shows:
         
     | 
| 223 | 
         
            +
                    - **Token Log Probability**: How confident the model is in predicting each token (closer to 0 is better)
         
     | 
| 224 | 
         
            +
                    - **Confidence**: Probability percentage for each token prediction
         
     | 
| 225 | 
         
            +
                    - **Top-k Predictions**: What other tokens the model considered likely
         
     | 
| 226 | 
         
            +
                    - **Visual Comparison**: Bar chart showing confidence differences between models
         
     | 
| 227 | 
         
            +
                    """
         
     | 
| 228 | 
         
            +
                )
         
     | 
| 229 | 
         
            +
                
         
     | 
| 230 | 
         
            +
                with gr.Row():
         
     | 
| 231 | 
         
            +
                    with gr.Column(scale=3):
         
     | 
| 232 | 
         
            +
                        input_text = gr.Textbox(
         
     | 
| 233 | 
         
            +
                            lines=3, 
         
     | 
| 234 | 
         
            +
                            placeholder="Enter text to analyze (e.g., 'Hello, World!')", 
         
     | 
| 235 | 
         
            +
                            label="Input Text",
         
     | 
| 236 | 
         
            +
                            value="Hello, World!"
         
     | 
| 237 | 
         
            +
                        )
         
     | 
| 238 | 
         
            +
                    with gr.Column(scale=1):
         
     | 
| 239 | 
         
            +
                        top_k = gr.Slider(
         
     | 
| 240 | 
         
            +
                            minimum=1, 
         
     | 
| 241 | 
         
            +
                            maximum=10, 
         
     | 
| 242 | 
         
            +
                            value=3, 
         
     | 
| 243 | 
         
            +
                            step=1, 
         
     | 
| 244 | 
         
            +
                            label="Top-k Predictions"
         
     | 
| 245 | 
         
            +
                        )
         
     | 
| 246 | 
         
            +
                
         
     | 
| 247 | 
         
            +
                with gr.Row():
         
     | 
| 248 | 
         
            +
                    compare_btn = gr.Button("Compare Models", variant="primary")
         
     | 
| 249 | 
         
            +
                
         
     | 
| 250 | 
         
            +
                with gr.Row():
         
     | 
| 251 | 
         
            +
                    with gr.Column():
         
     | 
| 252 | 
         
            +
                        summary_box = gr.Markdown(
         
     | 
| 253 | 
         
            +
                            elem_classes=["summary-box"],
         
     | 
| 254 | 
         
            +
                            label="Model Comparison Summary"
         
     | 
| 255 | 
         
            +
                        )
         
     | 
| 256 | 
         
            +
                
         
     | 
| 257 | 
         
            +
                with gr.Row():
         
     | 
| 258 | 
         
            +
                    with gr.Column():
         
     | 
| 259 | 
         
            +
                        comparison_table = gr.Dataframe(
         
     | 
| 260 | 
         
            +
                            label="Token-Level Analysis",
         
     | 
| 261 | 
         
            +
                            elem_classes=["dataframe-container"],
         
     | 
| 262 | 
         
            +
                            interactive=False,
         
     | 
| 263 | 
         
            +
                            wrap=True
         
     | 
| 264 | 
         
            +
                        )
         
     | 
| 265 | 
         
            +
                
         
     | 
| 266 | 
         
            +
                with gr.Row():
         
     | 
| 267 | 
         
            +
                    with gr.Column():
         
     | 
| 268 | 
         
            +
                        confidence_chart = gr.Plot(
         
     | 
| 269 | 
         
            +
                            label="Model Confidence Comparison",
         
     | 
| 270 | 
         
            +
                            elem_classes=["confidence-chart"]
         
     | 
| 271 | 
         
            +
                        )
         
     | 
| 272 | 
         
            +
                
         
     | 
| 273 | 
         
            +
                # Examples section
         
     | 
| 274 | 
         
            +
                gr.Examples(
         
     | 
| 275 | 
         
            +
                    examples=[
         
     | 
| 276 | 
         
            +
                        ["Hello, World!", 3],
         
     | 
| 277 | 
         
            +
                        ["The quick brown fox jumps over the lazy dog.", 5],
         
     | 
| 278 | 
         
            +
                        ["Artificial intelligence will transform our society.", 3],
         
     | 
| 279 | 
         
            +
                        ["What is the meaning of life?", 4]
         
     | 
| 280 | 
         
            +
                    ],
         
     | 
| 281 | 
         
            +
                    inputs=[input_text, top_k],
         
     | 
| 282 | 
         
            +
                    label="Try these examples:"
         
     | 
| 283 | 
         
            +
                )
         
     | 
| 284 | 
         
            +
                
         
     | 
| 285 | 
         
            +
                # Footer with explanation
         
     | 
| 286 | 
         
            +
                gr.Markdown(
         
     | 
| 287 | 
         
            +
                    """
         
     | 
| 288 | 
         
            +
                    ## How to Interpret Results
         
     | 
| 289 | 
         
            +
                    
         
     | 
| 290 | 
         
            +
                    1. **Log Probability**: Negative values where closer to 0 means higher model confidence
         
     | 
| 291 | 
         
            +
                    2. **Confidence**: Percentage showing how certain the model was about each token
         
     | 
| 292 | 
         
            +
                    3. **Top-k Predictions**: Alternative tokens the model considered likely
         
     | 
| 293 | 
         
            +
                    4. **Visual Chart**: Bar heights represent model confidence for each token
         
     | 
| 294 | 
         
            +
                    
         
     | 
| 295 | 
         
            +
                    **Model Differences**:
         
     | 
| 296 | 
         
            +
                    - **ERNIE-4.5-PT**: Instruction-tuned model, better at following complex instructions
         
     | 
| 297 | 
         
            +
                    - **ERNIE-4.5-Base-PT**: Base model, better at general language patterns
         
     | 
| 298 | 
         
            +
                    """
         
     | 
| 299 | 
         
            +
                )
         
     | 
| 300 | 
         
            +
                
         
     | 
| 301 | 
         
            +
                # Set up event handler
         
     | 
| 302 | 
         
            +
                compare_btn.click(
         
     | 
| 303 | 
         
            +
                    fn=compare_models,
         
     | 
| 304 | 
         
            +
                    inputs=[input_text, top_k],
         
     | 
| 305 | 
         
            +
                    outputs=[comparison_table, summary_box, confidence_chart]
         
     | 
| 306 | 
         
            +
                )
         
     | 
| 307 | 
         | 
| 308 | 
         
             
            if __name__ == "__main__":
         
     | 
| 309 | 
         
            +
                demo.launch()
         
     |