Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
import math
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Load model and tokenizer
|
| 10 |
model_ids = {
|
|
@@ -29,14 +31,24 @@ def format_prob(prob):
|
|
| 29 |
|
| 30 |
# Helper function to format log probability
|
| 31 |
def format_log_prob(log_prob):
|
| 32 |
-
"""Format log probability
|
| 33 |
return f"{log_prob:.3f}"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Main function: compute token-wise log probabilities and top-k predictions
|
| 36 |
@torch.no_grad()
|
| 37 |
def compare_models(text, top_k=5):
|
| 38 |
if not text.strip():
|
| 39 |
-
return None, "β οΈ Please enter some text to analyze"
|
| 40 |
|
| 41 |
results = {}
|
| 42 |
|
|
@@ -63,6 +75,8 @@ def compare_models(text, top_k=5):
|
|
| 63 |
# Generate top-k predictions for each position (up to first 20 tokens)
|
| 64 |
topk_list = []
|
| 65 |
confidence_list = []
|
|
|
|
|
|
|
| 66 |
for i in range(min(20, shift_logits.shape[1])):
|
| 67 |
topk = torch.topk(log_probs[0, i], k=top_k)
|
| 68 |
topk_ids = topk.indices.tolist()
|
|
@@ -77,71 +91,124 @@ def compare_models(text, top_k=5):
|
|
| 77 |
# Calculate confidence (probability of actual token)
|
| 78 |
actual_token_prob = math.exp(token_log_probs[0, i].item())
|
| 79 |
confidence_list.append(actual_token_prob)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
df = pd.DataFrame({
|
| 83 |
-
"Token": tokens[:20],
|
| 84 |
-
"LogProb": [format_log_prob(float(x)) for x in token_log_probs[0][:20]],
|
| 85 |
-
"Confidence": [format_prob(x) for x in confidence_list[:20]],
|
| 86 |
-
f"Top-{top_k} Predictions": topk_list
|
| 87 |
-
})
|
| 88 |
-
|
| 89 |
results[model_name] = {
|
| 90 |
-
"df": df,
|
| 91 |
-
"total_log_prob": total_log_prob,
|
| 92 |
"tokens": tokens[:20],
|
| 93 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
-
# Create
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
}
|
| 104 |
-
"
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
}
|
| 109 |
-
})
|
| 110 |
|
| 111 |
-
# Create
|
| 112 |
-
|
|
|
|
| 113 |
|
| 114 |
-
# Add
|
| 115 |
-
|
| 116 |
name='ERNIE-4.5-PT',
|
| 117 |
x=results["ERNIE-4.5-PT"]["tokens"],
|
| 118 |
-
y=results["ERNIE-4.5-PT"]["
|
| 119 |
-
marker_color='royalblue'
|
|
|
|
|
|
|
|
|
|
| 120 |
))
|
| 121 |
|
| 122 |
-
|
| 123 |
name='ERNIE-4.5-Base-PT',
|
| 124 |
x=results["ERNIE-4.5-Base-PT"]["tokens"],
|
| 125 |
-
y=results["ERNIE-4.5-Base-PT"]["
|
| 126 |
-
marker_color='lightseagreen'
|
|
|
|
|
|
|
|
|
|
| 127 |
))
|
| 128 |
|
| 129 |
-
|
| 130 |
-
title='
|
| 131 |
xaxis_title='Token',
|
| 132 |
yaxis_title='Confidence (Probability)',
|
| 133 |
barmode='group',
|
| 134 |
-
yaxis=dict(tickformat='.0%', range=[0, 1]),
|
| 135 |
legend=dict(
|
| 136 |
orientation="h",
|
| 137 |
yanchor="bottom",
|
| 138 |
y=1.02,
|
| 139 |
xanchor="right",
|
| 140 |
x=1
|
| 141 |
-
)
|
|
|
|
| 142 |
)
|
| 143 |
|
| 144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
pt_logprob = results['ERNIE-4.5-PT']['total_log_prob']
|
| 146 |
base_logprob = results['ERNIE-4.5-Base-PT']['total_log_prob']
|
| 147 |
|
|
@@ -153,34 +220,76 @@ def compare_models(text, top_k=5):
|
|
| 153 |
better_model = "ERNIE-4.5-Base-PT"
|
| 154 |
difference = base_logprob - pt_logprob
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
summary = (
|
| 157 |
f"π **Model Comparison Summary**\n\n"
|
| 158 |
f"**Total Log Probability**:\n"
|
| 159 |
f"- ERNIE-4.5-PT: {pt_logprob:.3f}\n"
|
| 160 |
f"- ERNIE-4.5-Base-PT: {base_logprob:.3f}\n\n"
|
|
|
|
|
|
|
|
|
|
| 161 |
f"π **Higher Confidence Model**: {better_model}\n"
|
| 162 |
-
f"Difference: {difference:.3f}
|
| 163 |
f"**What this means**:\n"
|
| 164 |
f"- Log probability closer to 0 (less negative) indicates higher model confidence\n"
|
| 165 |
f"- The {better_model} model is more confident in predicting your input text\n"
|
| 166 |
-
f"- Confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
)
|
| 168 |
|
| 169 |
-
return comparison_df, summary,
|
| 170 |
|
| 171 |
# Create custom CSS for better styling
|
| 172 |
css = """
|
| 173 |
.main-container {
|
| 174 |
-
max-width:
|
| 175 |
margin: 0 auto;
|
| 176 |
}
|
| 177 |
.dataframe-container {
|
| 178 |
margin: 20px 0;
|
| 179 |
}
|
| 180 |
-
.confidence-chart {
|
| 181 |
-
margin: 20px 0;
|
| 182 |
-
height: 400px;
|
| 183 |
-
}
|
| 184 |
.summary-box {
|
| 185 |
background-color: #f8f9fa;
|
| 186 |
border-left: 4px solid #4285f4;
|
|
@@ -188,26 +297,12 @@ css = """
|
|
| 188 |
border-radius: 4px;
|
| 189 |
margin: 20px 0;
|
| 190 |
}
|
| 191 |
-
.
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
font-family: monospace;
|
| 198 |
-
background-color: #f1f3f4;
|
| 199 |
-
padding: 4px 8px;
|
| 200 |
-
border-radius: 3px;
|
| 201 |
-
}
|
| 202 |
-
.confidence-high {
|
| 203 |
-
color: #0f9d58;
|
| 204 |
-
font-weight: bold;
|
| 205 |
-
}
|
| 206 |
-
.confidence-medium {
|
| 207 |
-
color: #f4b400;
|
| 208 |
-
}
|
| 209 |
-
.confidence-low {
|
| 210 |
-
color: #db4437;
|
| 211 |
}
|
| 212 |
"""
|
| 213 |
|
|
@@ -217,13 +312,7 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 217 |
"""
|
| 218 |
# π ERNIE 4.5 Model Comparison Tool
|
| 219 |
|
| 220 |
-
Compare how different ERNIE models process your text with detailed token-level analysis.
|
| 221 |
-
|
| 222 |
-
## What this tool shows:
|
| 223 |
-
- **Token Log Probability**: How confident the model is in predicting each token (closer to 0 is better)
|
| 224 |
-
- **Confidence**: Probability percentage for each token prediction
|
| 225 |
-
- **Top-k Predictions**: What other tokens the model considered likely
|
| 226 |
-
- **Visual Comparison**: Bar chart showing confidence differences between models
|
| 227 |
"""
|
| 228 |
)
|
| 229 |
|
|
@@ -233,7 +322,7 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 233 |
lines=3,
|
| 234 |
placeholder="Enter text to analyze (e.g., 'Hello, World!')",
|
| 235 |
label="Input Text",
|
| 236 |
-
value="
|
| 237 |
)
|
| 238 |
with gr.Column(scale=1):
|
| 239 |
top_k = gr.Slider(
|
|
@@ -245,7 +334,7 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 245 |
)
|
| 246 |
|
| 247 |
with gr.Row():
|
| 248 |
-
compare_btn = gr.Button("Compare Models", variant="primary")
|
| 249 |
|
| 250 |
with gr.Row():
|
| 251 |
with gr.Column():
|
|
@@ -256,18 +345,32 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 256 |
|
| 257 |
with gr.Row():
|
| 258 |
with gr.Column():
|
| 259 |
-
|
| 260 |
-
label="
|
| 261 |
-
elem_classes=["
|
| 262 |
-
interactive=False,
|
| 263 |
-
wrap=True
|
| 264 |
)
|
| 265 |
|
| 266 |
with gr.Row():
|
| 267 |
with gr.Column():
|
| 268 |
confidence_chart = gr.Plot(
|
| 269 |
-
label="
|
| 270 |
-
elem_classes=["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
)
|
| 272 |
|
| 273 |
# Examples section
|
|
@@ -287,10 +390,10 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 287 |
"""
|
| 288 |
## How to Interpret Results
|
| 289 |
|
| 290 |
-
1. **
|
| 291 |
-
2. **Confidence**:
|
| 292 |
-
3. **
|
| 293 |
-
4. **
|
| 294 |
|
| 295 |
**Model Differences**:
|
| 296 |
- **ERNIE-4.5-PT**: Instruction-tuned model, better at following complex instructions
|
|
@@ -302,7 +405,7 @@ with gr.Blocks(css=css, title="ERNIE Model Comparison Tool") as demo:
|
|
| 302 |
compare_btn.click(
|
| 303 |
fn=compare_models,
|
| 304 |
inputs=[input_text, top_k],
|
| 305 |
-
outputs=[comparison_table, summary_box, confidence_chart]
|
| 306 |
)
|
| 307 |
|
| 308 |
if __name__ == "__main__":
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
import math
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
|
| 11 |
# Load model and tokenizer
|
| 12 |
model_ids = {
|
|
|
|
| 31 |
|
| 32 |
# Helper function to format log probability
|
| 33 |
def format_log_prob(log_prob):
|
| 34 |
+
"""Format log probability"""
|
| 35 |
return f"{log_prob:.3f}"
|
| 36 |
|
| 37 |
+
# Helper function to get confidence level
|
| 38 |
+
def get_confidence_level(prob):
|
| 39 |
+
"""Get confidence level description based on probability"""
|
| 40 |
+
if prob > 0.8:
|
| 41 |
+
return "High", "π’"
|
| 42 |
+
elif prob > 0.5:
|
| 43 |
+
return "Medium", "π‘"
|
| 44 |
+
else:
|
| 45 |
+
return "Low", "π΄"
|
| 46 |
+
|
| 47 |
# Main function: compute token-wise log probabilities and top-k predictions
|
| 48 |
@torch.no_grad()
|
| 49 |
def compare_models(text, top_k=5):
|
| 50 |
if not text.strip():
|
| 51 |
+
return None, "β οΈ Please enter some text to analyze", None
|
| 52 |
|
| 53 |
results = {}
|
| 54 |
|
|
|
|
| 75 |
# Generate top-k predictions for each position (up to first 20 tokens)
|
| 76 |
topk_list = []
|
| 77 |
confidence_list = []
|
| 78 |
+
confidence_indicators = []
|
| 79 |
+
|
| 80 |
for i in range(min(20, shift_logits.shape[1])):
|
| 81 |
topk = torch.topk(log_probs[0, i], k=top_k)
|
| 82 |
topk_ids = topk.indices.tolist()
|
|
|
|
| 91 |
# Calculate confidence (probability of actual token)
|
| 92 |
actual_token_prob = math.exp(token_log_probs[0, i].item())
|
| 93 |
confidence_list.append(actual_token_prob)
|
| 94 |
+
|
| 95 |
+
# Get confidence level and indicator
|
| 96 |
+
level, indicator = get_confidence_level(actual_token_prob)
|
| 97 |
+
confidence_indicators.append(indicator)
|
| 98 |
|
| 99 |
+
# Store results for this model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
results[model_name] = {
|
|
|
|
|
|
|
| 101 |
"tokens": tokens[:20],
|
| 102 |
+
"log_probs": [format_log_prob(float(x)) for x in token_log_probs[0][:20]],
|
| 103 |
+
"confidences": [format_prob(x) for x in confidence_list[:20]],
|
| 104 |
+
"levels": confidence_indicators[:20],
|
| 105 |
+
"topk_predictions": topk_list,
|
| 106 |
+
"total_log_prob": total_log_prob,
|
| 107 |
+
"confidence_values": confidence_list[:20] # Keep raw values for plotting
|
| 108 |
}
|
| 109 |
|
| 110 |
+
# Create a properly structured dataframe
|
| 111 |
+
df_data = {"Token": results["ERNIE-4.5-PT"]["tokens"]}
|
| 112 |
+
|
| 113 |
+
# Add columns for each model
|
| 114 |
+
for model_name in ["ERNIE-4.5-PT", "ERNIE-4.5-Base-PT"]:
|
| 115 |
+
df_data[f"{model_name} LogProb"] = results[model_name]["log_probs"]
|
| 116 |
+
df_data[f"{model_name} Confidence"] = results[model_name]["confidences"]
|
| 117 |
+
df_data[f"{model_name} Level"] = results[model_name]["levels"]
|
| 118 |
+
df_data[f"{model_name} Top-{top_k}"] = results[model_name]["topk_predictions"]
|
| 119 |
+
|
| 120 |
+
# Create the dataframe
|
| 121 |
+
comparison_df = pd.DataFrame(df_data)
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
# Create visualizations
|
| 124 |
+
# 1. Token-level confidence comparison
|
| 125 |
+
fig_confidence = go.Figure()
|
| 126 |
|
| 127 |
+
# Add bars for both models
|
| 128 |
+
fig_confidence.add_trace(go.Bar(
|
| 129 |
name='ERNIE-4.5-PT',
|
| 130 |
x=results["ERNIE-4.5-PT"]["tokens"],
|
| 131 |
+
y=results["ERNIE-4.5-PT"]["confidence_values"],
|
| 132 |
+
marker_color='royalblue',
|
| 133 |
+
text=[format_prob(x) for x in results["ERNIE-4.5-PT"]["confidence_values"]],
|
| 134 |
+
textposition='auto',
|
| 135 |
+
textfont=dict(size=10)
|
| 136 |
))
|
| 137 |
|
| 138 |
+
fig_confidence.add_trace(go.Bar(
|
| 139 |
name='ERNIE-4.5-Base-PT',
|
| 140 |
x=results["ERNIE-4.5-Base-PT"]["tokens"],
|
| 141 |
+
y=results["ERNIE-4.5-Base-PT"]["confidence_values"],
|
| 142 |
+
marker_color='lightseagreen',
|
| 143 |
+
text=[format_prob(x) for x in results["ERNIE-4.5-Base-PT"]["confidence_values"]],
|
| 144 |
+
textposition='auto',
|
| 145 |
+
textfont=dict(size=10)
|
| 146 |
))
|
| 147 |
|
| 148 |
+
fig_confidence.update_layout(
|
| 149 |
+
title='Token-Level Confidence Comparison',
|
| 150 |
xaxis_title='Token',
|
| 151 |
yaxis_title='Confidence (Probability)',
|
| 152 |
barmode='group',
|
| 153 |
+
yaxis=dict(tickformat='.0%', range=[0, 1.05]),
|
| 154 |
legend=dict(
|
| 155 |
orientation="h",
|
| 156 |
yanchor="bottom",
|
| 157 |
y=1.02,
|
| 158 |
xanchor="right",
|
| 159 |
x=1
|
| 160 |
+
),
|
| 161 |
+
height=500
|
| 162 |
)
|
| 163 |
|
| 164 |
+
# 2. Log probability trend comparison
|
| 165 |
+
fig_logprob = go.Figure()
|
| 166 |
+
|
| 167 |
+
# Convert log probabilities back to float for plotting
|
| 168 |
+
pt_logprobs = [float(x) for x in results["ERNIE-4.5-PT"]["log_probs"]]
|
| 169 |
+
base_logprobs = [float(x) for x in results["ERNIE-4.5-Base-PT"]["log_probs"]]
|
| 170 |
+
|
| 171 |
+
fig_logprob.add_trace(go.Scatter(
|
| 172 |
+
name='ERNIE-4.5-PT',
|
| 173 |
+
x=results["ERNIE-4.5-PT"]["tokens"],
|
| 174 |
+
y=pt_logprobs,
|
| 175 |
+
mode='lines+markers',
|
| 176 |
+
line=dict(color='royalblue', width=3),
|
| 177 |
+
marker=dict(size=8),
|
| 178 |
+
text=[f"LogProb: {x}<br>Token: {t}" for x, t in zip(pt_logprobs, results["ERNIE-4.5-PT"]["tokens"])],
|
| 179 |
+
hoverinfo='text'
|
| 180 |
+
))
|
| 181 |
+
|
| 182 |
+
fig_logprob.add_trace(go.Scatter(
|
| 183 |
+
name='ERNIE-4.5-Base-PT',
|
| 184 |
+
x=results["ERNIE-4.5-Base-PT"]["tokens"],
|
| 185 |
+
y=base_logprobs,
|
| 186 |
+
mode='lines+markers',
|
| 187 |
+
line=dict(color='lightseagreen', width=3),
|
| 188 |
+
marker=dict(size=8),
|
| 189 |
+
text=[f"LogProb: {x}<br>Token: {t}" for x, t in zip(base_logprobs, results["ERNIE-4.5-Base-PT"]["tokens"])],
|
| 190 |
+
hoverinfo='text'
|
| 191 |
+
))
|
| 192 |
+
|
| 193 |
+
# Add a horizontal line at y=0 for reference
|
| 194 |
+
fig_logprob.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Zero Reference")
|
| 195 |
+
|
| 196 |
+
fig_logprob.update_layout(
|
| 197 |
+
title='Token-Level Log Probability Trend',
|
| 198 |
+
xaxis_title='Token',
|
| 199 |
+
yaxis_title='Log Probability',
|
| 200 |
+
hovermode='closest',
|
| 201 |
+
legend=dict(
|
| 202 |
+
orientation="h",
|
| 203 |
+
yanchor="bottom",
|
| 204 |
+
y=1.02,
|
| 205 |
+
xanchor="right",
|
| 206 |
+
x=1
|
| 207 |
+
),
|
| 208 |
+
height=400
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# 3. Model summary comparison
|
| 212 |
pt_logprob = results['ERNIE-4.5-PT']['total_log_prob']
|
| 213 |
base_logprob = results['ERNIE-4.5-Base-PT']['total_log_prob']
|
| 214 |
|
|
|
|
| 220 |
better_model = "ERNIE-4.5-Base-PT"
|
| 221 |
difference = base_logprob - pt_logprob
|
| 222 |
|
| 223 |
+
# Calculate average confidence for each model
|
| 224 |
+
pt_avg_conf = sum(results['ERNIE-4.5-PT']['confidence_values']) / len(results['ERNIE-4.5-PT']['confidence_values'])
|
| 225 |
+
base_avg_conf = sum(results['ERNIE-4.5-Base-PT']['confidence_values']) / len(results['ERNIE-4.5-Base-PT']['confidence_values'])
|
| 226 |
+
|
| 227 |
+
# Create summary chart
|
| 228 |
+
fig_summary = go.Figure()
|
| 229 |
+
|
| 230 |
+
fig_summary.add_trace(go.Bar(
|
| 231 |
+
name='Total Log Probability',
|
| 232 |
+
x=['ERNIE-4.5-PT', 'ERNIE-4.5-Base-PT'],
|
| 233 |
+
y=[pt_logprob, base_logprob],
|
| 234 |
+
marker_color=['royalblue', 'lightseagreen'],
|
| 235 |
+
text=[f"{pt_logprob:.3f}", f"{base_logprob:.3f}"],
|
| 236 |
+
textposition='auto',
|
| 237 |
+
textfont=dict(size=14)
|
| 238 |
+
))
|
| 239 |
+
|
| 240 |
+
fig_summary.update_layout(
|
| 241 |
+
title='Model Summary Comparison',
|
| 242 |
+
yaxis_title='Total Log Probability',
|
| 243 |
+
xaxis_title='Model',
|
| 244 |
+
height=300,
|
| 245 |
+
showlegend=False
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Add annotation for the better model
|
| 249 |
+
fig_summary.add_annotation(
|
| 250 |
+
x=0 if better_model == "ERNIE-4.5-PT" else 1,
|
| 251 |
+
y=max(pt_logprob, base_logprob) + 0.5,
|
| 252 |
+
text=f"π {better_model}",
|
| 253 |
+
showarrow=True,
|
| 254 |
+
arrowhead=1,
|
| 255 |
+
ax=0,
|
| 256 |
+
ay=-30,
|
| 257 |
+
font=dict(size=16, color="green")
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Create summary text
|
| 261 |
summary = (
|
| 262 |
f"π **Model Comparison Summary**\n\n"
|
| 263 |
f"**Total Log Probability**:\n"
|
| 264 |
f"- ERNIE-4.5-PT: {pt_logprob:.3f}\n"
|
| 265 |
f"- ERNIE-4.5-Base-PT: {base_logprob:.3f}\n\n"
|
| 266 |
+
f"**Average Confidence**:\n"
|
| 267 |
+
f"- ERNIE-4.5-PT: {format_prob(pt_avg_conf)}\n"
|
| 268 |
+
f"- ERNIE-4.5-Base-PT: {format_prob(base_avg_conf)}\n\n"
|
| 269 |
f"π **Higher Confidence Model**: {better_model}\n"
|
| 270 |
+
f"Difference: {difference:.3f}\n\n"
|
| 271 |
f"**What this means**:\n"
|
| 272 |
f"- Log probability closer to 0 (less negative) indicates higher model confidence\n"
|
| 273 |
f"- The {better_model} model is more confident in predicting your input text\n"
|
| 274 |
+
f"- Confidence indicators: π’ High (>80%), π‘ Medium (50-80%), π΄ Low (<50%)\n\n"
|
| 275 |
+
f"**Interpretation Guide**:\n"
|
| 276 |
+
f"- **LogProb**: How confident the model is in predicting each token (closer to 0 is better)\n"
|
| 277 |
+
f"- **Confidence**: Probability percentage for each token prediction\n"
|
| 278 |
+
f"- **Level**: Visual indicator of confidence (π’π‘π΄)\n"
|
| 279 |
+
f"- **Top-k**: What other tokens the model considered likely"
|
| 280 |
)
|
| 281 |
|
| 282 |
+
return comparison_df, summary, fig_confidence, fig_logprob, fig_summary
|
| 283 |
|
| 284 |
# Create custom CSS for better styling
|
| 285 |
css = """
|
| 286 |
.main-container {
|
| 287 |
+
max-width: 1400px;
|
| 288 |
margin: 0 auto;
|
| 289 |
}
|
| 290 |
.dataframe-container {
|
| 291 |
margin: 20px 0;
|
| 292 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
.summary-box {
|
| 294 |
background-color: #f8f9fa;
|
| 295 |
border-left: 4px solid #4285f4;
|
|
|
|
| 297 |
border-radius: 4px;
|
| 298 |
margin: 20px 0;
|
| 299 |
}
|
| 300 |
+
.chart-container {
|
| 301 |
+
margin: 20px 0;
|
| 302 |
+
border: 1px solid #e0e0e0;
|
| 303 |
+
border-radius: 8px;
|
| 304 |
+
padding: 15px;
|
| 305 |
+
background-color: #ffffff;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
}
|
| 307 |
"""
|
| 308 |
|
|
|
|
| 312 |
"""
|
| 313 |
# π ERNIE 4.5 Model Comparison Tool
|
| 314 |
|
| 315 |
+
Compare how different ERNIE models process your text with detailed token-level analysis and visualizations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
"""
|
| 317 |
)
|
| 318 |
|
|
|
|
| 322 |
lines=3,
|
| 323 |
placeholder="Enter text to analyze (e.g., 'Hello, World!')",
|
| 324 |
label="Input Text",
|
| 325 |
+
value="What is the meaning of life?"
|
| 326 |
)
|
| 327 |
with gr.Column(scale=1):
|
| 328 |
top_k = gr.Slider(
|
|
|
|
| 334 |
)
|
| 335 |
|
| 336 |
with gr.Row():
|
| 337 |
+
compare_btn = gr.Button("Compare Models", variant="primary", size="lg")
|
| 338 |
|
| 339 |
with gr.Row():
|
| 340 |
with gr.Column():
|
|
|
|
| 345 |
|
| 346 |
with gr.Row():
|
| 347 |
with gr.Column():
|
| 348 |
+
summary_chart = gr.Plot(
|
| 349 |
+
label="Model Summary",
|
| 350 |
+
elem_classes=["chart-container"]
|
|
|
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
with gr.Row():
|
| 354 |
with gr.Column():
|
| 355 |
confidence_chart = gr.Plot(
|
| 356 |
+
label="Token-Level Confidence Comparison",
|
| 357 |
+
elem_classes=["chart-container"]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with gr.Row():
|
| 361 |
+
with gr.Column():
|
| 362 |
+
logprob_chart = gr.Plot(
|
| 363 |
+
label="Token-Level Log Probability Trend",
|
| 364 |
+
elem_classes=["chart-container"]
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
with gr.Column():
|
| 369 |
+
comparison_table = gr.Dataframe(
|
| 370 |
+
label="Token-Level Analysis",
|
| 371 |
+
elem_classes=["dataframe-container"],
|
| 372 |
+
interactive=False,
|
| 373 |
+
wrap=True
|
| 374 |
)
|
| 375 |
|
| 376 |
# Examples section
|
|
|
|
| 390 |
"""
|
| 391 |
## How to Interpret Results
|
| 392 |
|
| 393 |
+
1. **Model Summary Chart**: Shows which model has higher overall confidence for your input text
|
| 394 |
+
2. **Token-Level Confidence Chart**: Compares how confident each model is for each token in your text
|
| 395 |
+
3. **Log Probability Trend Chart**: Shows how log probability changes across tokens (closer to 0 is better)
|
| 396 |
+
4. **Token-Level Analysis Table**: Detailed breakdown of predictions for each token
|
| 397 |
|
| 398 |
**Model Differences**:
|
| 399 |
- **ERNIE-4.5-PT**: Instruction-tuned model, better at following complex instructions
|
|
|
|
| 405 |
compare_btn.click(
|
| 406 |
fn=compare_models,
|
| 407 |
inputs=[input_text, top_k],
|
| 408 |
+
outputs=[comparison_table, summary_box, confidence_chart, logprob_chart, summary_chart]
|
| 409 |
)
|
| 410 |
|
| 411 |
if __name__ == "__main__":
|