Commit
·
2362d45
1
Parent(s):
e077179
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import nltk
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
| 5 |
+
|
| 6 |
+
nltk.download('punkt')
|
| 7 |
+
|
| 8 |
+
def tokenize_sentences(sentence):
|
| 9 |
+
encoded_dict = tokenizer.encode_plus(
|
| 10 |
+
sentence,
|
| 11 |
+
add_special_tokens=True,
|
| 12 |
+
max_length=128,
|
| 13 |
+
padding='max_length',
|
| 14 |
+
truncation=True,
|
| 15 |
+
return_attention_mask=True,
|
| 16 |
+
return_tensors='pt'
|
| 17 |
+
)
|
| 18 |
+
return torch.cat([encoded_dict['input_ids']], dim=0), torch.cat([encoded_dict['attention_mask']], dim=0)
|
| 19 |
+
|
| 20 |
+
def remove_stop_words(sentence):
|
| 21 |
+
words = nltk.word_tokenize(sentence)
|
| 22 |
+
custom_words = ['recommend', 'having', 'Hello', 'best', 'restaurant', 'top', 'want', 'need', 'well', 'most', 'should', 'be', 'good', 'also']
|
| 23 |
+
stop_words.update(custom_words)
|
| 24 |
+
words_without_stopwords = [word for word in words if word.lower() not in stop_words]
|
| 25 |
+
sentence_without_stopwords = ' '.join(words_without_stopwords)
|
| 26 |
+
return sentence_without_stopwords
|
| 27 |
+
|
| 28 |
+
def preprocess_query(query):
|
| 29 |
+
query = str(query).lower()
|
| 30 |
+
query = query.strip()
|
| 31 |
+
query = remove_stop_words(query)
|
| 32 |
+
return query
|
| 33 |
+
|
| 34 |
+
def predict_aspects(sentence, threshold):
|
| 35 |
+
input_ids, attention_mask = tokenize_sentences(sentence)
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
outputs = aspects_model(input_ids, attention_mask=attention_mask)
|
| 38 |
+
logits = outputs.logits
|
| 39 |
+
predicted_aspects = torch.sigmoid(logits).squeeze().tolist()
|
| 40 |
+
results = dict()
|
| 41 |
+
for label, prediction in zip(LABEL_COLUMNS_ASPECTS, predicted_aspects):
|
| 42 |
+
if prediction < threshold:
|
| 43 |
+
continue
|
| 44 |
+
precentage = round(float(prediction) * 100, 2)
|
| 45 |
+
results[label] = precentage
|
| 46 |
+
return results
|
| 47 |
+
|
| 48 |
+
# Load tokenizer and model
|
| 49 |
+
BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION = 'roberta-large'
|
| 50 |
+
tokenizer = RobertaTokenizer.from_pretrained(BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION, do_lower_case=True)
|
| 51 |
+
|
| 52 |
+
LABEL_COLUMNS_ASPECTS = ['FOOD-CUISINE', 'FOOD-DEALS', 'FOOD-DIET_OPTION', 'FOOD-EXPERIENCE', 'FOOD-FLAVOR', 'FOOD-GENERAL', 'FOOD-INGREDIENT', 'FOOD-KITCHEN', 'FOOD-MEAL', 'FOOD-MENU', 'FOOD-PORTION', 'FOOD-PRESENTATION', 'FOOD-PRICE', 'FOOD-QUALITY', 'FOOD-RECOMMENDATION', 'FOOD-TASTE', 'GENERAL-GENERAL', 'RESTAURANT-ATMOSPHERE', 'RESTAURANT-BUILDING', 'RESTAURANT-DECORATION', 'RESTAURANT-EXPERIENCE', 'RESTAURANT-FEATURES', 'RESTAURANT-GENERAL', 'RESTAURANT-HYGIENE', 'RESTAURANT-KITCHEN', 'RESTAURANT-LOCATION', 'RESTAURANT-OPTIONS', 'RESTAURANT-RECOMMENDATION', 'RESTAURANT-SEATING_PLAN', 'RESTAURANT-VIEW', 'SERVICE-BEHAVIOUR', 'SERVICE-EXPERIENCE', 'SERVICE-GENERAL', 'SERVICE-WAIT_TIME']
|
| 53 |
+
|
| 54 |
+
aspects_model = RobertaForSequenceClassification.from_pretrained(BERT_MODEL_NAME_FOR_ASPECTS_CLASSIFICATION, num_labels=len(LABEL_COLUMNS_ASPECTS))
|
| 55 |
+
aspects_model.load_state_dict(torch.load('./Aspects_Extraction_Model_updated.pth', map_location=torch.device('cpu')))
|
| 56 |
+
aspects_model.eval()
|
| 57 |
+
|
| 58 |
+
# Streamlit App
|
| 59 |
+
st.title("Implicit and Explicit Aspect Extraction")
|
| 60 |
+
|
| 61 |
+
sentence = st.text_input("Enter a sentence:")
|
| 62 |
+
threshold = st.slider("Threshold", min_value=0.0, max_value=1.0, step=0.01, value=0.5)
|
| 63 |
+
|
| 64 |
+
if sentence:
|
| 65 |
+
processed_sentence = preprocess_query(sentence)
|
| 66 |
+
results = predict_aspects(processed_sentence, threshold)
|
| 67 |
+
if len(results)>0:
|
| 68 |
+
st.write("Predicted Aspects:")
|
| 69 |
+
for aspect, percentage in results.items():
|
| 70 |
+
st.write(f"- {aspect}: {percentage}%")
|
| 71 |
+
else:
|
| 72 |
+
st.write("No aspects above the threshold.")
|